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ABSTRACT

We present a parallel mesh-free particle method to solve the
EEG forward problem in brain source localization. The meth-
od is based on discretization-corrected PSE operators and is
entirely mesh-free. This allows the flexible representation
of complex geometries and accurate solution of the forward
problem inside and around them. We present the method and
its parallel implementation, and we validate and benchmark
it on a test problem for which the exact solution is known.

1. INTRODUCTION

Live visualization of electric brain activity is important in a
diverse range of medical and biological applications, rang-
ing from neurobiology to behavioral biology and psychol-
ogy to personalized surgical planning, e.g., in epilepsy. Non-
invasive methods include electroencephalography (EEG) and
magnetoencephalography (MEG). These methods measure
the distribution of the electric potential (in the case of EEG)
or the magnetic field (in MEG) on the scalp surface or in the
immediate vicinity of the head. Reconstructing from these
measurements the internal brain activity that is most likely
to have caused the observed surface distribution is an inverse
problem. Accurate solutions depend on good regularization
schemes. The problem is further complicated by the com-
plex and patient-specific geometric shape of the brain, and
by anatomical differences or lesions in the skull bone.

A first important step toward solving the source-local-
ization problem is the development of a robust and accurate
simulation of the forward problem. There, one is interested
in predicting the expected potential or magnetic field distri-
bution on the scalp from a known intracranial activity. This
activity is hereby frequently modeled as an electric dipole
[7, 12, 11, 20]. Knowing the position and orientation of the
dipole, a numerical simulation is used to compute the poten-
tial on the scalp. Results from such simulations can then be

used to regularize the inverse problem of localizing an un-
known source from EEG or MEG measurements [4].

Previous works simulated the forward problem using Fi-
nite Element methods [21, 23, 20], Boundary Element Meth-
ods [8, 6], or Finite Difference methods [9]. Particular atten-
tion is usually given to the effects of anisotropic and inhomo-
geneous tissue conductivities and to the dipole-based mod-
eling of the electric source currents in various head models
[7, 12, 11]. Mesh-based simulation methods such as finite el-
ements, however, may encounter stability problems or may
become computationally inefficient in complex geometries,
such as the human head and brain. The former is particu-
larly pronounced for spectral elements, the latter stems from
the fact that the system matrix can lose its band-diagonal
structure in complex geometries, hence increasing the com-
putational complexity of the solver. Moreover, generating
a computational mesh in such geometries can be a daunt-
ing task in itself. Mesh-free simulations of the EEG forward
problem have hence attracted growing interest [19].

Here, we present a novel mesh-free particle method for
simulating the EEG forward problem. The method is based
on discretization-corrected PSE operators [17]. PSE is a
mesh-free discretization scheme for differential operators,
first developed for diffusion operators [2] and later general-
ized to arbitrary differential operators [3]. It has previously
been used for simulations in complex geometries [15] and on
complex-shaped surfaces [14]. Recently, we have proposed
a general discretization-correction (DC) framework for PSE
operators [17], which allows using arbitrary particle distri-
butions and remains consistent near boundaries. This allows
more flexibility to place particles of various resolution in and
around a geometric model of a brain or head as, e.g., seg-
mented from 3D MRI or CT scan images. An example of a
resulting particle distribution is shown in Fig. 1. In real sim-
ulations, however, a much larger number of particles is typi-
cally used, such that the simulation should efficiently paral-
lelize over a multi-processor computer.

We use the Parallel Particle Mesh (PPM) Library [16,



Figure 1: Illustration of a particle distribution around a geo-
metric model of a human brain. Different colors indicate par-
ticles of different electrical conductivity. Here, red particles
indicate skull bone, yellow ones scalp tissue and hair. For
better visualization, only the geometric model of the brain
is shown. The blue box indicates a region of interest for the
measurements.

1] to implement a scalable and efficient parallel simulation.
The PPM Library is a parallelization middleware for hybrid
particle-mesh methods that provides automatic domain de-
composition, load balancing, and communication schedul-
ing. It has previously enabled simulations meeting or ex-
ceeding the performance of state-of-the-art hand-parallelized
simulations [16, 13]. The PPM Library is based on a set
of abstract parallel data structures and abstract operators for
particle methods [13].

This paper is organized as follows: In Section 2, we
briefly state the EEG forward problem and propose a novel
particle method for its solution. In Section 3, we show val-
idation results of the method on a simple test case where an
analytical solution exists. Section 4 concludes the paper and
outlines future work.

2. METHOD

In the EEG forward problem, we are given the locations and
moments of a set of dipole current sources, an electrical
conductivity field, and the head/brain geometry. We want
to compute the electrical potential distribution on the scalp.
This can be done by solving the quasi-static Maxwell equa-
tions of electromagnetism in the given geometry and conduc-
tivity field, using the dipoles as input current source. In EEG
source analysis, quasi-static conditions hold [10, 5]. This

is because the wavelength of the fastest electrical signals in
the brain is much larger than the diameter of the head; we
do not need to resolve transient electromagnetic waves. The
non-magnetic part of the quasi-static Maxwell equations for
volume conduction is:

∇×E = 0 , (1)
∇ · (σE) = −∇ · Ji , (2)

where ∇ denotes the Nabla operator, E is the electric field,
Ji is the source current density from the active dipoles, and
σ(x) is the spatially varying electric conductivity tensor;
E,Ji ∈ Rn, σ ∈ Rn×n. Given the impressed current den-
sity Ji, we solve for the electric potential Φ:

E = −∇Φ. (3)

From Eq. 2, the electric potential Φ(x) at every location x
in the head can be found by solving

∇ · (σ∇Φ) = ∇ · Ji . (4)

The solution automatically also satisfies Eq. 1 because the
curl of the gradient of any scalar field is always the zero vec-
tor. We find the solution to Eq. 4 by evolving an arbitrary
initial field Φ0(x) according to the partial differential equa-
tion

∂Φ

∂τ
= ∇ · (σ∇Φ)−∇ · Ji (5)

until steady state is reached. Here, τ can be understood as
a pseudo-time; this evolution of Φ is not a physical process.
Thus, instead of solving the general Poisson Eq. 4 by invert-
ing the linear system of equations emerging from its spatial
discretization, the anisotropic diffusion Eq. 5 is solved until
steady state with an explicit time stepping scheme. This has
the advantage that no global matrix needs to be inverted. The
method is thus well suited to a parallel implementation. For
isotropic conductivity, the conductivity tensor simplifies to a
position-dependent scalar field.

Since no current can spontaneously exit the scalp and
enter air, homogeneous Neumann boundary conditions are
applied at the scalp:

∇Φ · n̂ = 0 , (6)

where n̂ is the outward unit normal vector. The source cur-
rent density Ji is usually modeled as a current dipole.

The evolution of Φ is performed on particles. TheN par-
ticles, located at positions {xp}Np=1, carry the values Φ0

p =
Φ0(xp), σp = σ(xp), and Dp = ∇ · Ji|xp

. The values
Φn

p are updated according to an explicit Euler time stepping
scheme as:

Φn+1
p = Φn

p + ∆tp
{

[∇ · (σ∇Φ)]np,h −Dp

}
, (7)



where

[∇ · (σ∇Φ)]np,h =

1

2ε2p

∑
q

[Φn
q − Φn

p ][σq + σq]Kp(xp − xq)φεp(xp − xq)

(8)

is the DC PSE approximation of ∇ · (σ∇Φ) at time step
n and position xp. Here, εp is the particle-specific kernel
width,Kp the particle-specific correction function, and φ the
kernel window function (see Ref. [17] for details about the
DC PSE method). The error of the approximation in Eq. 8 is
of order O(ε2p).

In order to avoid numerical difficulties caused by the in-
finite gradients at the dipole, we regularize the singularity
using ideas presented by other authors [18, 19]. Moreover, at
the borders between different tissues or materials, and on the
surface of the scalp, the electrical conductivity jumps. These
discontinuities are also regularized in order to achieve bet-
ter numerical accuracy. Here, we directly use the DC PSE
operators to regularize the conductivity field, leading to a
consistent method.

In our simulations, we consider as the computational do-
main a box completely containing a head model. We apply
DC PSE diffusion operators to smooth the initial σ-field to
the resolution of the method. The resolution is defined by
the DC PSE kernel width εp [17] and is set by the user. We
choose kernel widths that are equal to the inter-particle spac-
ing. Once the smoothed conductivity values are computed on
each particle, we use DC PSE operators to compute the gra-
dient of the smoothed conductivity and store it on the parti-
cles as well. After this initialization, the following algorithm
is iterated at each time step:

1. Loop over all particles and apply the DC PSE opera-
tor for anisotropic diffusion (Eq. 8) to solve Eq. 5 to
steady state.

2. Update Φ using an Euler time stepping scheme ac-
cording to Eq. 7.

3. Compute the residual Re = ‖∇ · (σ∇Φ)−∇ · Ji‖.

4. If Re < Rmax, the final solution Φ is found, else loop
back to Step 1.

3. BENCHMARKS

We verify the consistency and accuracy of the present method
in a simple test case where an analytical solution exists, the
homogeneous spherical head model [22]. Historically, spher-
ical head models have been widely used in solving the EEG
forward problem. Even though these models fail to capture
the geometry of a head or brain, they allow validation of

newly developed simulation algorithms since analytical so-
lutions for the EEG forward problem exist in this case [22].

We consider a sphere of radius R, centered at the ori-
gin and filled with a homogeneously conducting material
with constant and scalar σ. Inside the sphere is a dipole,
located at r0 = (0.1, 0.1, 0.1) with dipole moment m =
(1.0, 1.0, 1.0). The analytical solution for the electric poten-
tial Φ is known at every r for r > r0:

(9)

Φ =
m

4πσ
·

r − r0r3p
+

(
r − r2

R2 r0

)
R3r3pi

+
1

R3rpi

[
r +

r r0r
R2 cosϕ− r2

R2 r0

rpi + 1 + r0r
R2 cosϕ

] ,

whereϕ is the angle between r0 and r, the displacement vec-
tor is rp =r−r0 with length rp =

√
(r2 + r20 − 2rr0 cosϕ),

and rpi =
√

(1 + ( r0r
R2 )2 − 2 r0r

R2 cosϕ). For a schematic il-
lustration of rpi please see Ref. [22].

The present method does not rely on regular particle dis-
tributions. In this benchmark, however, we place the par-
ticles at the nodes of a Cartesian lattice with resolution h,
spanning the entire computational domain. This renders the
convergence analysis simpler and more easily reproducible.

In order to minimize the deteriorating effect of the dipole
and the smoothed conductivity region on the sphere surface,
we define a control shell with inner radius r1 = 9

26R and
outer radius r2 = 12

26R. We use the above algorithm to sim-
ulate the electric potential everywhere in the sphere and on
its surface. We then compare the so-obtained numerical so-
lution with the exact analytical solution from Eq. 9. Figure
2 shows the L2 and L∞ norms of the relative errors of the
numerical solution inside the control shell. The dotted line
indicates second-order convergence. As expected from the
second-order DC PSE kernels used, the simulation errors de-
crease quadratically with the inter-particle spacing h.

Figure 3 shows the resulting electric potential on the sur-
face of the sphere as computed by the present method.

All simulations are run in parallel on a cluster of quad-
core AMD Opteron 8380 CPUs where each node has four
CPUs and 32 GB of RAM. The simulation is implemented
as a client to the parallelization middleware PPM [16, 1] and
has been tested on up to 64 distributed-memory processor
cores. Figure 4 shows the parallel efficiency achieved by
the present implementation of the method for weak scal-
ing. The parallel efficiency measures the fraction of the
CPU time spent doing productive computations. It is less
than 1 and monotonically decreasing with increasing pro-
cessor numbers as the communication and synchronization
overhead grows. We compute the parallel efficiency from its
definition:

e =
t(1)N(NProc)

t(NProc)N(1)NProc
,
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Figure 2: The convergence of the L2 (∗) and L∞ (�) norms
of the relative errors of the numerical solution for the ho-
mogeneous spherical head test case with decreasing inter-
particle spacing h. The dotted line indicates second-order
convergence.

where t(1) is the wall-clock time to solution on a single pro-
cessor core, t(NProc) the time to solution when running in
parallel on NProc processor cores, and N(1) and N(NProc)
are the problem sizes (numbers of particles) on 1 and NProc

processor cores, respectively. The parallel efficiency on 64
processors was 0.88, indicating good scalability of the code
to moderate numbers of processors as relevant to the present
problem. All absolute wall-clock times were between 3 and
4 seconds per time step.

4. CONCLUSIONS

We have introduced a mesh-free particle method to solve the
EEG forward problem. The presented method uses DC PSE
operators in order to provide the maximum flexibility when
placing the particles in and around complex head/brain ge-
ometries. We have presented the simulation algorithm and
verified its consistency and convergence on a simple test
problem for which an exact solution is available. The re-
sults show that the method converges with the proper order
of accuracy. The simulation is implemented as a client to
the PPM Library [16, 1], which allows it to run in parallel
on multiple processors. We have benchmarked the imple-
mentation on up to 64 distributed-memory processor cores,
showing parallel efficiencies better than 80%.

Ongoing and future work is concerned with testing the
method on more realistic head models and head/brain ge-
ometries as segmented out of MRI or CT scans. This will
also include validation of the method against experimentally
measured EEG signals. The inherent adaptivity of the DC

Figure 3: Visualization of the numerically computed electric
potential, interpolated from the particles onto the surface of
the sphere.

PSE particle method and the parallel software implementa-
tion using PPM are expected to be beneficial then. Future
work will also extend the method to the MEG forward prob-
lem, for which the magnetic field needs to be simulated as
well.
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