
THE JOURNAL OF CHEMICAL PHYSICS 134, 014106 (2011)

A partial-propensity formulation of the stochastic simulation algorithm
for chemical reaction networks with delays

Rajesh Ramaswamya) and Ivo F. Sbalzarinib)

Institute of Theoretical Computer Science and Swiss Institute of Bioinformatics, ETH Zurich,
CH-8092 Zürich, Switzerland

(Received 24 September 2010; accepted 9 November 2010; published online 7 January 2011)

Several real-world systems, such as gene expression networks in biological cells, contain coupled
chemical reactions with a time delay between reaction initiation and completion. The non-Markovian
kinetics of such reaction networks can be exactly simulated using the delay stochastic simulation
algorithm (dSSA). The computational cost of dSSA scales with the total number of reactions in the
network. We reduce this cost to scale at most with the smaller number of species by using the concept
of partial reaction propensities. The resulting delay partial-propensity direct method (dPDM) is an
exact dSSA formulation for well-stirred systems of coupled chemical reactions with delays. We detail
dPDM and present a theoretical analysis of its computational cost. Furthermore, we demonstrate the
implications of the theoretical cost analysis in two prototypical benchmark applications. The dPDM
formulation is shown to be particularly efficient for strongly coupled reaction networks, where the
number of reactions is much larger than the number of species. © 2011 American Institute of Physics.
[doi:10.1063/1.3521496]

I. INTRODUCTION

Stochastic kinetics of a well-stirred system of coupled
chemical reactions is described by the chemical master equa-
tion (CME).1 Time trajectories of the population (molecule
copy numbers) of the chemical species can be sampled from
the CME using one of the many exact formulations of the
stochastic simulation algorithm (SSA).1–8 All of these exact
SSA formulations assume instantaneous execution of reac-
tions; the population of species is instantaneously updated at
the time of reaction firing. In many real-world systems, such
as gene expression networks in biological cells, however, re-
actions do not finish instantaneously, but there is a time delay
between reaction initiation and completion. The average tran-
scription and translation speeds in eukaryotic cells, for exam-
ple, are 20 nucleotides per second and 2 codons per second,
respectively.9, 10 Transcription and translation processes hence
incur some delay after initiation. Delay in stochastic chemi-
cal reactions has also been proposed as a mechanism to tune
or induce circadian-rhythmic oscillation in drosophila.11, 12 In
order to simulate chemical reaction networks with delays, the
delay stochastic simulation algorithm (dSSA) is available,13

extending SSAs to properly account for the effects of nonzero
reaction durations. The main complication in doing so stems
from the fact that the reaction propensities (i.e., the probabil-
ity rate of a reaction firing) may change in the time between
two reaction initiations (firings) as a result of pending reac-
tions finishing meanwhile.

Chemical reaction networks can be represented by their
dependency graph. In this graph, each node (vertex) repre-
sents a reaction, and an arrow (directed edge) is drawn from
node p to node q if reaction p affects the propensity of re-

a)Electronic mail: rajeshr@ethz.ch.
b)Electronic mail: ivos@ethz.ch.

action q.3 The out-degree of node p is defined as the num-
ber of arrows leaving that node. Using this representation,
we distinguish two coupling classes of chemical reaction net-
works: weakly coupled and strongly coupled.7 In weakly cou-
pled reaction networks, the maximum out-degree in the de-
pendency graph (i.e., the degree of coupling of the network)
is constant or bounded by a constant with increasing network
size. Strongly coupled reaction networks have a degree of
coupling that increases unboundedly with network size. The
scaling of the computational cost (here formalized using the
Bachmann–Landau “big-O” notation) of SSAs is determined
by the coupling class of the network. For weakly coupled re-
action networks, the computational cost (CPU time) of the
delay direct method (dDM),13 an exact dSSA formulation, is
O(p + M + log�), where p is the search depth to sample the
time to the next reaction, M is the number of chemical reac-
tions in the network, and � is the number of pending reac-
tions at a given time. For strongly coupled reaction networks,
the computational cost of dDM is O(pM + log�).

We have recently introduced a class of novel exact
SSA formulations that are based on the concept of partial
propensities.7, 8 For reaction networks without delays, these
formulations have a computational cost of O(N) (N being
the number of chemical species in the network) for strongly
coupled networks and O(1) for weakly coupled ones.

Here, we present a partial-propensity exact SSA for
chemical reaction networks with delays: the delay partial-
propensity direct method (dPDM). It is based on the concept
of factored-out, partial reaction propensities7, 8, 14 and is an ex-
act formulation of dSSA. We show that the computational cost
of dPDM is O(pN + log�) for strongly coupled networks
and O(p + N + log�) for weakly coupled ones. As a result
of using partial propensities, the number of reactions M in
the computational cost of dDM is replaced by the smaller

0021-9606/2011/134(1)/014106/8/$30.00 © 2011 American Institute of Physics134, 014106-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3521496
http://dx.doi.org/10.1063/1.3521496
http://dx.doi.org/10.1063/1.3521496
mailto: rajeshr@ethz.ch
mailto: ivos@ethz.ch

014106-2 R. Ramaswamy and I. F. Sbalzarini J. Chem. Phys. 134, 014106 (2011)

TABLE I. Outline of the algorithm for the delay direct method (dDM) with global times. We only give the main steps and refer to the original publication
for the detailed substeps (Ref. 13).

1. Initialization: set t ← 0, δa0 ← 0, and the number of pending reactions � ← 0; initialize the population vector n, the propensities aμ, and the total
propensity a0 = ∑

μ aμ.
2. Sample the global time of firing of the next reaction, τ g: First, perform linear search to find the search depth p such that p ∈ [T g

p , T g
p+1) according to

Eq. (3). Then compute τ g according to Eq. (5). Update � ← � − p and set t ← τ g.
3. Sample the index of the next reaction μ according to Eq. (6) using linear search.
4. If μ is a delay reaction, insert t + dμ into the list that stores the global times of the pending reactions. Use bisection search to insert at the proper

position such that the list is maintained in ascending order; increment � ← � + 1.
4. Update n depending on the delay type of reaction μ.
5. Update the affected aμ’s using a dependency graph and calculate the change in total propensity δa0.
6. Update a0 ← a0 + δa0.
7. Go to step 2.

number of species N . The dPDM formulation is thus espe-
cially efficient when p and log�, which are network-specific
parameters that are independent of the simulation method,
do not scale faster than O(N). In addition, the linear depen-
dence of the computational cost on N makes dPDM especially
efficient for strongly coupled reaction networks, where M
grows much faster than N with network size. As in all partial-
propensity methods, these computational savings are realized
by restricting ourselves to networks of elementary chemical
reactions. Nonelementary reactions can be decomposed into
sets of elementary ones1, 15 at the expense of linearly (in the
order of the reaction) increased network size.

II. THE DELAY STOCHASTIC SIMULATION
ALGORITHM (dSSA)

Consider a network of M chemical reactions among N
species. Assume a subset of these M reactions incur a de-
lay. If a reaction is a nondelay reaction (hereafter denoted as
RD0), it completes instantaneously and the populations of re-
actants and products are immediately updated. If a reaction
μ is a delay reaction, its products are formed only after a
delay dμ from reaction initiation. We classify delay reactions
depending on when the reactants are consumed into noncon-
suming (denoted RD1) and consuming (denoted RD2) ones. In
nonconsuming delay reactions, the population of reactants is
only updated once the products are formed, thus after the de-
lay dμ. In consuming delay reactions, the population of the
reactants is updated immediately upon reaction initiation, but
the products only form after the delay dμ. In the following,
we measure time globally, i.e., relative to time t = 0. This is
in contrast to the local (relative to the current time t) times
used in the original dSSA publication.13 We denote the global
time of firing (initiation) of the next reaction as τ g = t + τ

and the global time at which the products of a delay reaction
μ are formed as dg

μ = t + τ + dμ.
Assume that at some time t there are � pending (ongo-

ing) delay reactions that will finish at later global times T g
1 ,

T g
2 , T g

3 , . . . , T g
�. We assume that the list of pending reactions

is ordered according to ascending global completion times,
thus T g

i ≤ T g
i+1, i = 1, . . . ,� − 1. Furthermore, we define

T g
0 = t and T g

�+1 = ∞. As in classical SSA, the time to the
next reaction τ (or the global time of firing of the next re-
action, τ g) and the index of the next reaction μ are sampled

in order to propagate the system from reaction event to re-
action event. In classical SSA, all reactions complete instan-
taneously, i.e., reaction initiation and completion happen at
the same time. Therefore, the reaction propensities remain un-
changed during the time interval [t, t + τ). This, however, is
not the case in delay SSAs, where the reaction propensities
change whenever a pending reaction completes. Accounting
for these inter-firing changes of the propensities, the probabil-
ity density functions for the global time of firing (initiation)
of the next reaction fτ (τ g) and of the index of the reaction
fμ(μ) are given by:13

fτ (τ g) = a0
(
T g

i

)
exp

(
−

i−1∑
j=0

a0
(
T g

j

)(
T g

j+1 − T g
j

)

− a0
(
T g

i

)(
τ g − T g

i

))
,

τ g ∈ [
T g

i , T g
i+1

)
, i = 0, . . . ,�, (1)

and

fμ(μ) = aμ

(
T g

i

)
a0

(
T g

i

) , μ = 1, . . . , M, τ g ∈ [
T g

i , T g
i+1

)
. (2)

Here, aμ(t) is the reaction propensity of reaction μ at global
time t and a0(t) is the total propensity of all reactions at global
time t .

A. The delay direct method

In dDM as presented by Cai et al.13 and summarized in
Table I, the global time of firing of the next reaction τ g is
obtained from Eq. (5) using linear search in order to sample
the interval p such that

p = max
[
i : r1 ≥ F

(
T g

i

)]
(3)

with τ g ∈ [T g
p , T g

p+1) and r1 a uniform random number in
[0,1). Here, F(·) is the cumulative distribution function of the
probability density function fτ (τ g) [Eq. (1)]. It is given by:

F(τ g) = 1 − exp

(
−

i−1∑
j=0

a0
(
T g

j

)(
T g

j+1 − T g
j

)

− a0
(
T g

i

)(
τ g − T g

i

))
,

τ g ∈ [
T g

i , T g
i+1

)
, i = 0, . . . , �. (4)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

014106-3 A partial-propensity delay SSA J. Chem. Phys. 134, 014106 (2011)

Note that in order to find p, we have to keep track of the
time evolution of a0. This is done by successively updating
the propensities aμ and the total propensity a0 every time a
pending reaction completes. Therefore, p is the search depth
needed to sample τ g.

Once the interval p is determined, τ g is calculated as

τ g = T g
p + − log (1 − r1) − ∑p−1

j=0 a0
(
T g

j

)(
T g

j+1 − T g
j

)
a0

(
T g

p
) ,

(5)

such that

τ g ∈ [
T g

p , T g
p+1

)
.

The index μ of the next reaction is also obtained by lin-
ear search. Unlike in Gillespie’s original direct method (DM),
however, the probability density function of μ depends on the
interval p. The next reaction is hence always sampled after p
has been found. Using a uniform random number r2 ∈ [0, 1),
μ is found such that

μ = min

⎡
⎣μ′ : r2a0

(
T g

p

)
<

μ∑
μ′=1

aμ′
(
T g

p

)⎤⎦ . (6)

The computational cost of dDM is O(pM + log�) for
strongly coupled reaction networks and O(p + M + log�)
for weakly coupled ones, as shown in Appendix A.

III. THE DELAY PARTIAL-PROPENSITY DIRECT
METHOD (dPDM)

The delay partial-propensity direct method (dPDM) is
based on the concept of factorized reaction propensities,
called partial propensities. These partial propensities are then
grouped according to the common factored-out species, and
the next reaction is sampled using linear search.7, 8

A. Prerequisites for dPDM

The basic concepts underlying dPDM are partial
propensities and partial-propensity SSAs.14 For conciseness,
we briefly review these concepts below. For a more detailed
description, the reader is referred to the corresponding origi-
nal publications.7, 8

1. Partial propensities

The partial propensity of a reaction with respect to one
of its reactants is defined as the propensity per unit number of
molecules of that reactant.7 For example, the partial propen-
sity π (i)

μ of reaction μ with respect to (perhaps the only) re-
actant Si is aμ/ni , where aμ is the propensity of reaction μ

and ni is the population (molecule copy number) of Si . The
partial propensities of the three elementary reaction types are:

� Bimolecular reactions (Si + S j → Products): aμ =
ni n j cμ and π (i)

μ = n j cμ, π
(j)
μ = ni cμ. If both reac-

tants are of the same species, i.e., S j = Si , only one

partial propensity exists, π (i)
μ = 1

2 (ni − 1)cμ, because
the reaction degeneracy is 1

2 ni (ni − 1).
� Unimolecular reactions (Si → Products): aμ = ni cμ

and π (i)
μ = cμ.

� Source reactions (∅ → Products): aμ = cμ and
π (0)

μ = cμ.

Here, the cμ’s are the specific probability rates. In the follow-
ing, we consider only elementary reaction types. Any reaction
with three or more reactants can be equivalently decomposed
into a series of elementary subreactions.1, 15, 16

2. Partial-propensity SSAs

Partial-propensity SSAs reduce the computational cost
of SSAs to at most O(N) by sampling reaction partners in-
stead of complete reactions. This is achieved by grouping the
partial propensities of all reactions according to the index of
the factored-out reactant,7 resulting in at most N + 1 groups
of size O(N). Every reaction and its corresponding partial
propensity are then identifiable by two indices: a group index
and an element index. The group index identifies the partial-
propensity group to which a reaction belongs (i.e., the first
reaction partner) and the element index identifies the posi-
tion of the reaction inside that group (i.e., the second reaction
partner). Determining the index of the next reaction is done
by first sampling its group index and then the element index.

After the selected reaction has fired and the populations
of the involved species have changed, the partial propensities
are updated using a dependency graph over species. This de-
pendency graph points to all partial propensities that need to
be updated due to a given change in population. Since any par-
tial propensity is a function of the population of at most one
species, the number of updates is at most O(N). In weakly
coupled reaction networks, the number of updates is O(1),
since the degree of coupling is bounded by a constant, by def-
inition of a weakly coupled network.

B. Detailed description of the dPDM algorithm

Like in PDM, the partial propensities in dPDM are stored
in a “partial-propensity structure” � = {�i }N

i=0 as a one-
dimensional array of one-dimensional arrays.7 Each array �i

contains the partial propensities of the reactions belonging to
group i , i.e., the partial propensities where ni has been fac-
tored out. The partial-propensity structure only needs to be
constructed once, at the beginning of a simulation. This is
done automatically as described previously.8 The reaction in-
dex μ corresponding to a certain entry in � is stored in a
look-up table L = {Li }N

i=0. Each reaction μ is then identified
by its group index I and its element index J as μ = LI,J . The
“group-sum array” � stores the sums of the partial propensi-
ties in each group �i , i.e., �i = ∑

j �i, j . We also store the
total propensity of each group in an array �, computed as
�i = ni�i , i = 1, . . . , N , and �0 = �0.7

After each reaction event (reaction initiation or comple-
tion) the population n, the partial propensities �i, j , the �i ’s,
and the �i ’s need to be updated. Which values need to be
updated depends on the type of event that happened (firing
of a nondelay reaction, initiation of a nonconsuming delay

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

014106-4 R. Ramaswamy and I. F. Sbalzarini J. Chem. Phys. 134, 014106 (2011)

reaction, initiation of a consuming delay reaction, or comple-
tion of a delay reaction). We efficiently implement the updates
using the following data structures:

U(1): an array of M arrays, where the i th array contains the
indices of all species involved in the i th reaction.

U(2): an array of M arrays containing the corresponding
stoichiometry (the change in population of each species
upon reaction) of the species stored in U(1).

U(1)
(−): an array of M arrays, where the i th array contains
the indices of all species that are reactants in the i th re-
action.

U(2)
(−): an array of M arrays containing the corresponding

stoichiometry of the reactant species stored in U(1)
(−).

U(1)
(+): an array of M arrays, where the i th array contains the
indices of all species that are products in the i th reaction.

U(2)
(+): an array of M arrays containing the corresponding

stoichiometry of the product species stored in U(1)
(+).

U(3): an array of N arrays, where the i th array contains the
indices of all entries in � that depend on ni .

We also maintain a priority queue T that stores the global
times (T g

i , i = 0, . . . , �) of the � pending reactions in as-
cending order. The corresponding indices and delay types
(RD0, RD1, or RD2) of the reactions are stored in the lists μ(D)

and D, respectively.
In dPDM, the global time of firing (initiation) of the next

reaction, τ g, and the index of the next reaction are mutually
dependent. First, the interval p is found according to Eq. (3)
using linear search such that the global time of firing of the
next reaction τ g ∈ [T g

p , T g
p+1). This tells us between which

two reaction completion events the next firing or initiation
event happens [see Fig. 1(a)]. The difference between dPDM
and dDM in sampling p is the mechanism of updating the
total propensity a0(T g

i) each time a pending reaction com-
pletes and is removed from the queue of pending reactions.
In dPDM, we make use of the partial propensities � and the
associated data structures to update a0. For instance, assume
that τ g ∈ [T g

1 , T g
2) and the reaction type associated with the

global completion time T g
1 is RD2 (consuming delay reaction).

In this case, we update n using U(1)
(+) and U(2)

(+). If the finishing
reaction is of type RD1 (nonconsuming delay reaction), n is
updated using U(1) and U(2). Subsequently, � and the associ-
ated data structures are updated using U(3), thereby obtaining
δa0 (the change in a0) and hence the new a0. All these updates
are done at the completion time of each pending reaction un-
til the interval containing the global time of firing (initiation)
of the next reaction is reached and all p pending reactions
that have completed are removed from the queue T. Then, the
global time of firing (initiation) of the next reaction, τ g, within
that interval is calculated according to Eq. (5).

For sampling the index μ of the next reaction, we use a
single uniformly distributed random number r2 ∈ [0, 1) to (a)
sample the group index I using linear search such that

I = min

[
I ′ : r1a0

(
T g

p

)
<

I ′∑
i=0

�i
(
T g

p

)]
(7)

FIG. 1. Illustration of the main steps in dPDM. (a) Illustration of the lin-
ear search to find the interval p such that the global time of firing (initi-
ation) of the next reaction τ g ∈ [T g

p , T g
p+1). In this figure, the number of

pending reactions � = 6. (b) Illustration of the partial-propensity structure
� and the grouping based on the index of the common factored-out reac-
tant. The group index I of the next reaction is sampled using linear search
over the total propensities of the groups, �i . The element index J within the
selected group is found using linear search over the partial propensities stored
in group I .

and (b) sample the element index J in �I using linear search
such that

J = min

[
J ′ : r1a0

(
T g

p

)
<

J ′∑
j=1

nI �I, j
(
T g

p

)

+
(

I∑
i=0

�i
(
T g

p

)) − �I
(
T g

p

)]
(8)

if τ g ∈ [T g
p , T g

p+1) [see Fig. 1(b)]. The indices I and J are then
translated back to the reaction index μ using the look-up table
L, thus μ = LI,J . It has been shown earlier that this sampling
strategy over partial propensities is algebraically equivalent to
the linear search over propensities used in Gillespie’s DM.7

Since dDM is a delay variant of DM, with the same sampling
strategy as DM, this also makes the present sampling strategy
equivalent to the linear search used in dDM.

Once the index of the next reaction is sampled, we ascer-
tain the type of the reaction and initiate it. If μ is a nonde-
lay (type RD0) reaction, then the population n is immediately
updated using U(1) and U(2). Subsequently, � is updated us-
ing U(3). If μ is a nonconsuming delay reaction (type RD1), n
and � are not updated at the time of reaction initiation. In-
stead, the attributes of this delay reaction (its global time of
completion, index, and type) are inserted into T, μ(D), and D,
respectively. We ensure that the global completion times in T
are maintained in ascending order by inserting at the appro-
priate location, which is found using bisection search. If μ

is a consuming delay reaction (type RD2), n is immediately
updated using U(1)

(−) and U(2)
(−). Subsequently, � is updated

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

014106-5 A partial-propensity delay SSA J. Chem. Phys. 134, 014106 (2011)

TABLE II. Detailed algorithm for the delay partial-propensity direct method (dPDM), explicitly describing all substeps.

1. Initialization: set t ← 0, δa0 ← 0, and the number of pending reactions � ← 0; initialize the population vector n, the partial propensities �

(see Appendix B of Ref. 8), the group sum array �, �, and the total propensity a0 ← ∑N
i=0 �i ; initialize T, D, and μ(D) (these are empty at this step);

initialize the update structures U(1), U(2), U(1)
(−), U(2)

(−), U(1)
(+), and U(2)

(+).

2. Sample the global time of firing of the next reaction, τ g:
2.1. Generate a uniform random number r1 in [0,1).
2.2. If � == 0 (i.e., T is empty) then t ← t − log(r1/a0)
2.3. else

2.3.1. λ1 ← t ; λ2 ← T1; at ← a0(λ2 − λ1); F ← 1 − exp(−at)
2.3.2. While F < r1

2.3.2.1. Get current delay reaction and its type from μ
(D)
1 and D1, respectively. Update n, �, �, and � accordingly using the proper subset of update

structures U(1), U(2), U(1)
(−), U(2)

(−), U(1)
(+), and U(2)

(+), U(3) (see Sec. III B). Calculate δa0 and set a0 ← a0 + δa0.

2.3.2.2. λ1 ← T1. Remove T1, μ
(D)
1 , and D1 from the corresponding lists and decrement � ← � − 1.

2.3.2.3. If � == 0 then exit from the while loop 2.3.2.
2.3.2.4. else λ2 ← T1

2.3.2.5. at ← at + a0(λ2 − λ1); F ← 1 − exp(−at)

2.3.3. if � == 0 then τ g ← λ1 + − log (1−r1)−at −a0(λ2−λ1)
a0

; set t ← τ g

2.3.4. else τ g ← λ1 + − log (1−r1)−at
a0

; set t ← τ g.

3. Sample the index of the next reaction, μ: Using linear search, sample the group index I and element index J of the next reaction according to
Eqs. (7) and (8), respectively. Look up the index of the next reaction as μ = LI,J .

4. If μ is a delay reaction, increment � ← � + 1. Insert t + dμ into T, μ into μ(D), and the type of the delay reaction into D. Use bisection search to ensure
that the entries in T are in ascending order and maintain the correspondence between T, μ(D), and D.

4. Update n depending on reaction μ’s type:
4.1. If μ is RD0, then update n using U(1) and U(2)

4.2. else if μ is RD1, then do not update n
4.2. else if μ is RD2, then update n using U(1)

(−) and U(2)
(−)

5. Update � using the update structure U(3) and calculate the change in total propensity δa0.
6. Update a0 ← a0 + δa0.
7. Go to step 2.

using U(3). In addition, the attributes of this reaction are
inserted into T, μ(D), and D at the appropriate location, again
found by bisection search.

In summary, dPDM is an exact formulation of dSSA,
generalizing PDM to handle reactions with delays according
to the probability density functions of dSSA [Eqs. (1) and
(2)]. The detailed algorithm of dPDM is given in Table II.
The computational cost of dPDM is O(pN + log�) for
strongly coupled reaction networks and O(p + N + log�)
for weakly coupled ones, as shown in Appendix B.

IV. BENCHMARKS

We benchmark the computational performance of dPDM
on both a weakly coupled and a strongly coupled prototypi-
cal reaction network. We choose the cyclic chain model4 and
the colloidal aggregation model17 as representative networks
for which we compare the performance of dPDM with that of
dDM.13 The cyclic chain model is the most weakly coupled
network possible, the colloidal aggregation model is strongly
coupled. The performance for other networks with intermedi-
ate degrees of coupling will lie between these two extremes.
In the benchmarks, we only consider consuming delay reac-
tions since they require updates at both the time of reaction
initiation as well as completion.

All tested SSA formulations are implemented in
C++ using the random number generator of the GSL library
and compiled using the Intel C++ compiler version 11.1 with
the O3 optimization flag. All timings are measured on a Linux

2.6 workstation with a 2.8 GHz quad-core Intel Xeon E5462
processor and 8 GB of memory. For all test cases, we simulate
the reaction network until 107 reactions have been initiated,
and we report the average CPU time
 per reaction initia-
tion (i.e., the average time to execute steps 2–7 in Table II for
dPDM and Table I for dDM).

A. A strongly coupled reaction network:
Colloidal aggregation model

The colloidal aggregation model is given by

Sn + Sm
cn,m−−−−−→ Sn+m, n + m = 2, . . . , N ,

(9)

Sn+m
c̄n,m−−−−−→ Sn + Sm, n + m = 2, . . . , N .

For N chemical species, the number of reactions is
M =
N 2/2�. The degree of coupling (maximum out-degree
of the dependency graph) of this reaction network is 3N − 7
and hence scales with system size.

At time t = 0, we set all ni = 1 and all specific proba-
bility rates cμ = 1. We set all reactions with an even index
to be consuming delay reactions (RD2), each with a delay of
dμ = 0.1. The rest of the reactions are nondelay reactions
(RD0). The benchmarks confirm that the search depth p to
sample the global time of firing (initiation) of the next reac-
tion is O(1), and that the logarithm of the number of pend-

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

014106-6 R. Ramaswamy and I. F. Sbalzarini J. Chem. Phys. 134, 014106 (2011)

ing delay reactions, log�, is O(logN). Hence, the computa-
tional cost of this simulation is O(N) for dPDM and O(N 2)
for dDM. This is shown in Fig. 2(a), where
(N) for dPDM
and dDM are compared.

Figure 2(b) shows the results for larger networks on a
linear scale. Here, we consider networks of up to N = 2000
species and M = 2 million reactions in order to reveal mem-
ory contention effects. Around N = 1000 species, the slope
of the cost curve increases, while remaining O(N). This is
probably due to the partial-propensity structure not fitting into
cache any more. The machine used for the benchmark has a
4 MB L2 cache. At N = 1000 the partial-propensity structure
for this network contains 500 000 double-precision floating-
point numbers of 8 bytes each, amounting to exactly 4 MB.

In summary, for a strongly coupled reaction network, the
computational cost of dPDM is O(pN + log�) as predicted
by the theoretical analysis.

B. A weakly coupled reaction network:
Cyclic chain model

The cyclic chain model is given by the reaction network

Si
ci−→ Si+1, i = 1, . . . , N − 1,

(10)
SN

cN−→ S1.

For N chemical species, this network has the smallest
possible number of M = N reactions. The degree of coupling
of this reaction network is 2, independent of system size.

At time t = 0, we set all ni = 1 and all specific probabil-
ity rates cμ = 1. We set all reactions with an even index to be
consuming delay reactions (RD2), each with a delay dμ = 0.1.
The rest of the reactions are nondelay reactions (RD0). The
benchmarks confirm that the search depth p to sample τ g is
O(1) and that log� is O(logN). Hence, the computational
cost of this simulation is O(N) for dPDM as well as for dDM.
The corresponding
(N) for dPDM and dDM are shown in
Fig. 2(c).

In summary, for a weakly coupled reaction network, the
computational cost of dPDM is O(p + N + log�) as pre-
dicted by the theoretical analysis.

V. CONCLUSIONS AND DISCUSSION

We have introduced the delay partial-propensity direct
method (dPDM), a partial-propensity formulation of the delay
stochastic simulation algorithm (dSSA)13 to simulate chemi-
cal reaction networks with delays. dPDM uses partial propen-
sities and reaction groups in order to improve computa-
tional efficiency. For reaction networks with no delays, dPDM
becomes identical to the partial-propensity direct method
(PDM).7

The presented dPDM is an exact dSSA formulation with
a computational cost of O(pN + log�) for strongly coupled
reaction networks and O(p + N + log�) for weakly cou-
pled networks. Here, N is the number of chemical species,
p is the search depth to sample the time to the next
reaction, and � is the number of pending delay reactions at
a given time. We have presented a theoretical cost analysis of

FIG. 2. Computational cost of dPDM (squares) and dDM (circles). The aver-
age (over 100 independent runs) CPU time
 per reaction initiation (i.e., the
average time to execute steps 2–7 in Table II for dPDM, and Table I for dDM)
is shown as a function of the number of species N in the reaction network.
(a) Logarithmic plot of
(N) for the strongly coupled colloidal aggregation
model, considering systems of size up to N = 320.
 is O(N) for dPDM and
O(M) = O(N 2) for dDM. (b) Linear plot of
(N) for the strongly coupled
colloidal aggregation model, considering systems of size up to N = 2000
(2 million reactions). While the scaling of the computational cost remains
linear for all system sizes tested, the slope increases around N = 1000. This
is the system size beyond which the partial-propensity structure does not fit
into the computer’s cache memory any more. (c) Linear plot of
(N) for the
weakly coupled cyclic chain model. The solid lines are linear least square fits.

 is O(N) for both dPDM and dDM, but with a smaller slope for dPDM.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

014106-7 A partial-propensity delay SSA J. Chem. Phys. 134, 014106 (2011)

dPDM and confirmed its results in two benchmark cases pro-
totypical of strongly and weakly coupled reaction networks.
Since p and � are properties of the chemical reaction net-
work alone, and the only other variable that the computational
cost depends on is linear in N , dPDM is especially efficient
for strongly coupled reaction networks with delays. This is
because in these networks the number of chemical species
N grows much slower with network size than the number of
chemical reactions M .

However, dPDM inherits the limitations of partial-
propensity methods.7, 8 It is limited to chemical reaction net-
works composed of elementary reactions involving at most
two reactants. Nonelementary reactions can be treated by de-
composing them into elementary reactions.1, 15 This, however,
increases the network size proportionally to the order (the
number of reactant species) of the nonelementary reaction.
For small networks, dPDM is outperformed by other methods
due to the overhead of the additional data structures. Other
dSSA formulations, such as the delay direct method (dDM),13

might be more efficient there. In addition, the computational
cost of dPDM could be further reduced to O(p + log�)
for weakly coupled reaction networks by using composition-
rejection sampling6, 8, 18 instead of linear search2, 7 to sample
the index of the next reaction. On multi-scale (stiff) reac-
tion networks, prototypical of biochemical networks where
the propensities span several orders of magnitude, dynamic
sorting5, 7 could further reduce the computational cost, even
though its scaling with N would remain the same. Such a for-
mulation would be analogous to SPDM, the sorting variant of
PDM.

A C++ implementation of dPDM at the time of writing
is available as supplementary material to this article.19 A con-
stantly updated version is available free of charge on the web
page of the authors.

ACKNOWLEDGMENTS

R.R. was financed by a grant from the Swiss Sys-
temsX.ch initiative, grant WingX, evaluated by the Swiss Na-
tional Science Foundation. This project was also supported
with a grant from the Swiss SystemsX.ch initiative, grant
LipidX-2008/011 to I.F.S.

APPENDIX A: COMPUTATIONAL COST OF dDM

The algorithm of the delay direct method (dDM)13 is
summarized in Table I. It is built around a list of global com-
pletion times of the pending delay reactions, maintained in
ascending order. The computational cost of this algorithm is
determined by the following steps:

Update step: For a strongly coupled reaction network,
firing of one reaction can potentially affect all propensi-
ties. Hence, the computational cost of updating the reaction
propensities is O(M), where M is the number of reactions in
the network. For a weakly coupled reaction network the up-
date step is O(1) since the number of propensities affected
by a reaction is (by definition of a weakly coupled network)
bounded by a constant.

Sampling the global time of the next reaction: The com-
putational cost of sampling the global time of firing (initia-
tion) of the next reaction, τ g, is O(pM) for a strongly cou-
pled reaction network. Here, p is the search depth to locate
τ g according to Eq. (3). This is because the number of times
the propensities need to be updated due to pending reactions
finishing is p when τ g ∈ [T g

p , T g
p+1). In each of these p up-

dates, O(M) propensities need to be updated. Similarly, for a
weakly coupled reaction network, the computational cost of
sampling τ g is O(p).

Sampling the index of the next reaction: The index of the
next reaction is found by linear search across the M propen-
sities. The computational cost of this operation is O(M). If
the sampled reaction is a delay reaction, it is added to the list
of pending reactions, along with its global completion time.
Using bisection search to maintain the list of global comple-
tion times in ascending order upon inserting a new reaction
is O(log�), where � is the number of pending reactions cur-
rently in the list.

In summary, the computational cost of dDM is O(pM
+ M + log�) for strongly coupled reaction networks. This
is equivalent to O(pM + log�) for p > 0. For weakly
coupled reaction networks, the computational cost is O(p
+ M + log�). Note that when there are no delay reactions,
the computational cost of dDM is O(M), as for Gillespie’s
original direct method.

APPENDIX B: COMPUTATIONAL COST OF dPDM

The algorithm of the delay partial-propensity direct
method (dPDM) as presented in this paper is detailed in
Table II. Its computational cost is determined by the following
steps:

Update step: The computational cost of the update step
is O(N) and O(1) for strongly and weakly coupled reaction
networks, respectively, where N is the number of species in
the network. Assuming that the number of species involved in
any chemical reaction is O(1) (i.e., does not increase beyond
a constant bound as the number of species in the network in-
creases), the number of entries in � that need to be updated
after any reaction has fired scales at most linearly with N .7, 8

This is the case for strongly coupled reaction networks. For
weakly coupled ones, the number of partial propensities that
need to be updated after any reaction is O(1), by definition of
a weakly coupled network.7, 8

Sampling the global time of the next reaction: The com-
putational cost of sampling the global time of firing (initia-
tion) of the next reaction, τ g, is O(pN) and O(p) for strongly
and weakly coupled reaction networks, respectively. This is
because the number of times the partial propensities need to
be updated due to a finishing pending reaction is p, where p
is search depth to locate τ g. During each of these p updates,
the number of partial propensities that need to be recomputed
is O(N) and O(1) for strongly and weakly coupled reaction
networks, respectively.

Sampling the index of the next reaction: Sampling the
group index is performed using linear search across the N + 1
groups. Subsequently, the element index is sampled using lin-
ear search across the O(N) partial propensities within the

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

014106-8 R. Ramaswamy and I. F. Sbalzarini J. Chem. Phys. 134, 014106 (2011)

selected group. The computational cost of sampling the index
of the next reaction hence is O(N). If the sampled reaction is
a delay reaction, it is added to the list of pending reactions,
along with its attributes. Using bisection search to maintain
the list of global completion times in ascending order upon
inserting a new reaction is O(log�), where � is the number
of pending reactions currently in the list.

In summary, the computational cost of dPDM is O(pN
+ N + log�) for strongly coupled reaction networks. This
is equivalent to O(pN + log�) for p > 0. For weakly
coupled reaction networks, the computational cost is O(p
+ N + log�). Note that when there are no delay reac-
tions, the computational cost of dPDM is O(N), as for
PDM.7

1D. T. Gillespie, Physica A 188, 404 (1992).
2D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
3M. A. Gibson and J. Bruck, J. Phys. Chem. A 104, 1876 (2000).
4Y. Cao, H. Li, and L. Petzold, J. Chem. Phys. 121, 4059 (2004).
5J. M. McCollum, G. D. Peterson, C. D. Cox, M. L. Simpson, and N. F.
Samatova, Comput. Biol. Chem. 30, 39 (2006).

6A. Slepoy, A. P. Thompson, and S. J. Plimpton, J. Chem. Phys. 128, 205101
(2008).

7R. Ramaswamy, N. González-Segredo, and I. F. Sbalzarini, J. Chem. Phys.
130, 244104 (2009).

8R. Ramaswamy and I. F. Sbalzarini, J. Chem. Phys. 132, 044102 (2010).
9B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and
P. Walter, Essential Cell Biology (Garland Publication, Inc., New York,
1997).

10X. Cai and Z. Xu, J. Chem. Phys. 126, 074102 (2007).
11Q. Li and X. Lang, Biophys. J. 94, 1983 (2008).
12Z. Xu and X. Cai, EURASIP J. Bioinform. Syst. Biol. 2009, 386853

(2009).
13X. Cai, J. Chem. Phys. 126, 074102 (2007).
14R. Ramaswamy and I. F. Sbalzarini, Fast exact stochastic simulation al-

gorithms using partial propensities, in Proc. ICNAAM, Numerical Analy-
sis and Applied Mathematics, International Conference (AIP, New York,
2010), pp. 1338–1341.

15K. R. Schneider and T. Wilhelm, J. Math. Biol. 40, 443 (2000).
16T. Wilhelm, J. Math. Chem. 27, 71 (2000).
17P. Meakin, Ann. Rev. Phys. Chem. 39, 237 (1988).
18L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag,

New York, 1986).
19See supplementary material at http://dx.doi.org/10.1063/1.3521496 for a

C++ implementation of dPDM at the time of writing. A constantly updated
version is available free of charge on the web page of the authors.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1063/1.1778376
http://dx.doi.org/10.1016/j.compbiolchem.2005.10.007
http://dx.doi.org/10.1063/1.2919546
http://dx.doi.org/10.1063/1.3154624
http://dx.doi.org/10.1063/1.3297948
http://dx.doi.org/10.1063/1.2436869
http://dx.doi.org/10.1529/biophysj.107.109611
http://dx.doi.org/10.1155/2009/386853
http://dx.doi.org/10.1063/1.2436869
http://dx.doi.org/10.1007/s002850000026
http://dx.doi.org/10.1023/A:1019131221994
http://dx.doi.org/10.1146/annurev.pc.39.100188.001321
http://dx.doi.org/10.1063/3521496
ivos
Highlight

ivos
Sticky Note
should be: X. Cai, J. Chem. Phys. 126, 124108 (2007)

ivos
Highlight

ivos
Sticky Note
should be: 124108

