System: any potential source of data
- boundary in vs. out
- inputs → environ infl. system
- outputs → system del. data

Experiment: Process of extracting data from a system
- observation of outputs
- perturbation of inputs & obtain of outputs

Model: A model of a system and a specific set of exp is anything to which the exp can be applied instead of the system
- experimental frame of a model
- a model is a system
- need not be mathematical

Simulation: experiment performed on a model
- within exp frame
- need not be computational

Modeling: Process of building a model.

Continuity Assumption

\[\rho : \text{concentration} = \frac{\#}{V} \]
Knudsen number \(Kn \) : \(\frac{1}{\ell} \)

\(Kn \ll 1 \) → continuum if \(V > \lambda \)

\(Kn > 1 \) → always discrete!
Time Scales

- Models only contain a limited spectrum of time scales.
 - computational efficiency
 - numerical stability

\[
x(t) \quad \text{explicit Euler} \quad \frac{dx}{dt} = f(x)
\]

\[
x_{t+1} = x_t + hf'(x_t)
\]

\(t = 0, \ldots, T\)

want that \(x_{t+1} \approx x((t+1)h)\)

\[
\frac{dx}{dt} = -ax \quad \Rightarrow \quad x(t) = x_0 e^{-at}
\]

\(x_0 \quad x(t) \quad t\)

\[
* \quad x_{t+1} = x_t - ahx_t = x_t (1-ah)
\]

used: \(|1-ah| < 1\)

\[
L \quad 1-ah > 0 \quad \Rightarrow \quad 1 + ah < 1
\]

\[
h > 0
\]

\[
1-ah < 0 \quad \Rightarrow \quad -1 + ah < 1
\]

\[
ah < 2 \quad l < \frac{2}{a_{\text{max}}}
\]

\[
0 < h < \frac{2}{a_{\text{max}}}
\]
Distinguish:
- too slow \rightarrow constant
- relevant \rightarrow \text{dynamic eqs.} (ODE)
- too fast \rightarrow \text{algebraic eqs.}

"Relevance" is defined by variables of interest & rep. frame of model.

FRAP ex.
relevant: diffusion of protein
 concentration field
slow: - room temp. changes
 - cell motion/deformation
fast: - camera dynamics
 - laser switching dynamics

Reservoirs & Flows

Dynamics \leftrightarrow Reservoirs/Storage/Integrators

for extensive quantities: ex:
- mass
- energy
- money
- information

\Rightarrow Levels of reservoirs, called state var.

\Rightarrow Flows between reservoirs.
Modeling Steps

1) Define system boundaries, inputs, outputs.

2) Identify reservoirs of relevant time scale and their levels. \[\Rightarrow \text{reservoirs are independent.} \]

3) Formulate algebraic eqs. for flows between reservoirs.

\[
\text{Flow} = f(\text{activ. level} - \text{inhibit. level})
\]

4) Formulate balance eqs. for the reservoirs.

\[
\sum \frac{d}{dt}(\text{level}) = \sum \text{inflows} - \sum \text{outflows}
\]

5) Simplify eqs., recast algebraic parts, non-dimensionalize, normalize, ...

6) Solve model eqs. (analytically, numerically)

\[
\Rightarrow \text{level}(t) \quad \text{level}_t \bigg|_{t=0}
\]

7) Identify unknown parameters by fitting solution to data

8) Validate model using parameter values from (7) on data not used in (7).
Example: FLIP - experiment of ER lumen of living cell.

1) Boundary: ER membrane
 Inputs: bleaching
 Outputs: fluorescence

2) Fluorescence washes in ER lumen
 Too fast: fast & common
 Diffusion
 Too slow: changes in steady state
 Gene expression

3) \[\frac{\partial m(t)}{\partial t} = \text{inflow} - \text{outflow} - \text{bleaching} \]

4) \[\frac{dm(t)}{dt} = -\dot{m}_\text{out} = -\frac{V}{V}\beta(t-kat), \quad k = 0, 1, 2, \ldots \]

5) \[m(t) = m_0 e^{-kt} \quad k = \frac{V}{V}\beta \]

6) \[H(t) = \begin{cases} 0, & t < 0 \\ 1, & t \geq 0 \end{cases} \]

7) \[k = \frac{V}{V}\beta \]

8) See slide.
Vector Calculus

1) Fields

- scalar fields: \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) \((x) \rightarrow f(x)\)
 e.g. temperature, pressure, density, ...

- vector fields: \(\mathbf{v} : \mathbb{R}^n \rightarrow \mathbb{R}^m \) \((x) \rightarrow \mathbf{v}(x)\)
 e.g. force, electric field, director, ...

Field lines: curves \(\mathbf{x}(s) : s \rightarrow \mathbf{x}(s) \)
that is orthogonal to \(\mathbf{v} \) everywhere.

- stationary fields: value does not change over time

- unsteady fields: depend on time.

Derivatives of fields

\[
\frac{d}{dt}(a \cdot \mathbf{b}) = \frac{da}{dt} \cdot \mathbf{b} + \frac{db}{dt} \cdot a
\]

\[
\frac{d}{dt}(a \times \mathbf{b}) = \frac{da}{dt} \times \mathbf{b} + a \times \frac{db}{dt}
\]
2) Differential Operators

- Gradient $\nabla f(x)$

in Cartesian \mathbb{R}^3:

$$\nabla f(x) = \begin{pmatrix} \frac{df}{dx} \\ \frac{df}{dy} \\ \frac{df}{dz} \end{pmatrix}$$

$f(x) = f(x, y, z)$

in general:

$$\nabla f := \lim_{\nu \to 0} \frac{f(x + \nu) - f(x)}{\nu}$$

$f = f \Rightarrow \nabla f = 0$.

∇f points the direction of steepest increase of f.

$\nabla f = 0 \Rightarrow$ extremum.

Isosurfaces $\nabla f = 0$.

Directional derivatives:

$$\frac{df}{dc} = c \cdot \nabla f$$

with $|c| = 1$.
- Divergence \(\text{div} \, \mathbf{v} \)

In Cartesian \(\mathbb{R}^3 \):

\[
\text{div} \, \mathbf{v} (x, y, z) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}
\]

In general:

\[
\text{div} \, \mathbf{v} := \lim_{\Delta \to 0} \frac{\int_{\Delta} \mathbf{v} \cdot d\mathbf{s}}{\Delta}
\]

\[
\mathbf{v} = \mathbf{0} \quad \Rightarrow \quad \text{div} \, \mathbf{v} = 0
\]

\(\text{div} \, \mathbf{v} (x) \): source strength at \(x \).
\[\text{curl } \mathbf{v} \]

in Cartesian \(\mathbb{R}^3 \):

\[\text{curl } \mathbf{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}, \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}, \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) \]

in general

\[\text{curl } \mathbf{v} := \lim_{\Delta \to 0} \frac{\int_{\Delta} \mathbf{v} \cdot d\mathbf{s}}{\Delta} \]

\[\text{curl } \mathbf{v}(x) \text{: vortex strength at } x \text{. (vorticity)} \]
Laplace \(\Delta = \text{div} (\text{grad}) \)

\(\text{curl} (\text{grad}) \equiv 0 \)

\(\text{div} (\text{curl}) \equiv 0 \)

Note: Notation \(\nabla \)

in Cartesian \(\mathbb{R}^3 \):

\[\mathbf{v} = \left(\frac{\partial v_x}{\partial x}, \frac{\partial v_y}{\partial y}, \frac{\partial v_z}{\partial z} \right) \]

\[\text{grad} f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \]

\[\text{div} \mathbf{v} = \nabla \cdot \mathbf{v} \]

\[\text{curl} \mathbf{v} = \nabla \times \mathbf{v} \quad (\text{rot}) \]

\[\Delta = \nabla \cdot \nabla = \nabla^2 \]

3) **Flux** \(\Phi \)

\[\Phi \]

If \(\mathbf{v} \) is a velocity field of a flow, how much fluid is transported through a surface \(S \) per unit time?

\[\mathbf{v} \cdot \mathbf{n} \, dS \]

\[\Phi = \int_S \mathbf{v} \cdot \mathbf{n} \, dS \]

\[\Phi = \int_S \mathbf{v} \cdot \mathbf{dS} \]

\[\Phi = \int_S \mathbf{v} \cdot \mathbf{dS} = \int_S \mathbf{v} \cdot ds \]
4) Work \(W \)

\[\text{Q: if} \; \mathbf{v} \; \text{is a force field, how much work is done by moving a point mass along path } L \; \text{from } A \; \text{to } B. \]

\[dW = \mathbf{v} \cdot d\mathbf{r} \]

\[W = \int_{L} \mathbf{v} \cdot d\mathbf{r} \]
5) Integral Theorems

Gauss
\[\oint_{\partial B} \mathbf{v} \cdot d\mathbf{S} = \iiint_B \text{div} \mathbf{v} \, dV \]
Net flow across \(\partial B \).

Stokes
\[\int_C \mathbf{v} \cdot d\mathbf{r} = \int_{\partial S} \text{curl} \mathbf{v} \cdot d\mathbf{S} \]

Green: not elementary
\[\text{Gauss: } \mathbf{v} = f \mathbf{r} \]
6) **Conservative Fields**

Def.: A vector field $\mathbf{V}(x, y, z)$ is called conservative if the work along all paths from A to B is same, for all (A, B).

\[W(L_1) = W(L_2) = W(L_3) \]

\Rightarrow Work along any closed path is 0.

\Rightarrow Work does not depend on path chosen, but only on start & end point.

\Rightarrow A & B are state variables.

\[\text{"friction/displacement-free"}. \] \hspace{1cm} (\times)

7) **Differential Equations**

- Laplace \[\Delta f = 0 \]
 \[\text{div}(\text{grad}f) = 0 \]

- Poisson \[\Delta f = g(x) \]

\[(\times) \text{ fact: each gradient field is conservative and vice versa.} \]

If \mathbf{V} is conservative, then

1. \mathbf{f} s.t. $\mathbf{V} = \text{grad} \mathbf{f}$.
2. \mathbf{f}: potential

Each conservative field is vector whose

\[\text{curl}(\text{grad}f) = 0 \]
Modeling Spatial Effects (Control Volume Concept)

Control Volumes

\[x_1 < \text{control vol} < x_2 \]

Control Volume:
- Volume of integration
- Contained in a field
- Arbitrary shape & location

Euler:
- Fixed in space
- Flux of \(\mathbf{V} \) across boundary
- Material goes in & out

Lagrange:
- Move with velocity \(\mathbf{V} \)
- No flux of \(\mathbf{V} \) across boundary
- Always contains same material
Change

Field $f(x,t)$ e.g. temperature

What is change in f that one measures in a control volume?

Euler

$$\left[\frac{df}{dt} \right]_{x=\text{const}}$$

Field derivative

Lagrange

$$\frac{\partial}{\partial \tau} \left(f(x(t), \tau) \right) ; \quad \frac{dx}{dt} = v$$

$$= \frac{2f}{2x} \frac{2x}{2t} + \frac{2f}{2t}$$

velocity v

Lagrangian derivative

$$\frac{df}{dt} + \nabla f \cdot \mathbf{v} \mathbf{v} + \frac{Df}{Dt}$$

$$\frac{df}{dt} \quad \mathbf{v}$$

$$f(x,t)$$

$$\nabla f \cdot \mathbf{v} \quad \mathbf{v}$$

$$\nabla f = 0$$
Reynold's Transport Theorem (1875)

Extensive Lagrangian \[\leftrightarrow\] Intensive Eulerian
Reservoir levels \[\leftrightarrow\] Balance equations
Model \[\Rightarrow\] Simulate

How does an extensive quantity \(q = \int f \, dV \) change over time in a Lagrangian control volume?

For intensive quantities: \[
\frac{Df}{Dt} = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f
\]

Conservation: An extensive quantity that is constant in a Lagrangian control volume is conserved.

\[
\frac{Dq}{Dt} = \frac{D}{Dt} \int_V f \, dV
\]

\[
= \int_V \left(\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f \right) \, dV + \int_V f \frac{D}{Dt} \left(\frac{dV}{dt} \right)
\]

\[
= \int_V \left[\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + f \mathbf{v} \cdot \frac{dV}{dt} \right] \, dV
\]

\[
= \int_V \left[\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + f \mathbf{v} \cdot \mathbf{v} \right] \, dV
\]

\[
= \int_V \left[\frac{\partial f}{\partial t} + \mathbf{v} \cdot \mathbf{n} \right] \, dV
\]

\[
\frac{Dq}{Dt} = \int_V \left[\frac{\partial f}{\partial t} + \mathbf{v} \cdot \mathbf{n} \right] \, dV = \frac{Df}{Dt}
\]

Balance equation
Chemical reaction model
Fluxes
Example: Diffusion

Concentration: \(c(x,t) \)

1) What quantity to model?
 - Mass \(m = \int_V u \, dv \)

2) Conservation law: assume conservation of mass

 \[\frac{Dm}{Dt} = 0 \]

3) Apply Reynolds Transport Theorem

 \[\frac{Dm}{Dt} = \int \left(\frac{\partial u}{\partial t} \right) \, dv + \int v \cdot (u \cdot n) \, ds = 0 \]

4) Algebraic equations for flows

 - Flux \(v^T u = -D \cdot u \cdot c \) (Fick’s law)

 - Diffusion constant \(D = \frac{c^2}{T} \)

5) Balance equations

 \[\int \frac{\partial u}{\partial t} \, dv = -\int v \cdot (u \cdot n) \, ds = \int v^T (D \cdot u) \, dv \]

6) Simplify:

 \[\int \left(\frac{\partial u}{\partial t} - D \cdot (D \cdot u) \right) \, dv = 0 \]

7) Go to arbitrary control volumes

 \[\frac{\partial u}{\partial t} - D \cdot (D \cdot u) = 0 \]

 Diffusion equation

Assume: \(D(x, t) = D = \text{const} \)

\[\frac{\partial u}{\partial t} = D \cdot u \]
Particle Methods for Spatiotemporal Simulation

- Function approximations
- Operator approximations

Modelling \rightarrow Graph of injection reservoirs \rightarrow PDE

Simulation

$u(x, t) \rightarrow \tilde{u}(x_p, t_j)$

$p = 1, \ldots, N$

$j = 1, \ldots, T$

$0 < |x_p - x_q| < \theta$

$\forall (q \neq p, p)$

finite diff. FEM TV Particle Methods

1) Particle = Lagrangian Control Volume
 Particle carry extensive quantities.
 \Rightarrow close to the model.
2) in complex geometries,
 in moving geometries.
3) universal.
4) numerical stability, no CFL condition.

- boundaries are harder
- more costly
- need extra "tricks" (e.g. cell lists,
 remeshing, etc.)
Particle: \((x, c, u, v)_p; \quad p = 1, \ldots, N\)

Property: \(c_p = u_p \in (x_p, t)\)

Because: \(v_p \leq L^3; \quad \forall v_p = |x_p|\)

\[
\begin{cases}
\frac{dx_p}{dt} = \sum_{q=1}^{\infty} k(x_p, x_q, c_p, c_q) = u_p \\
\frac{dc_p}{dt} = \sum_{q=1}^{\infty} F(x_p, x_q, c_p, c_q)
\end{cases}
\]

\(K: \) ? evolution kernel

\(F: \) ? interaction kernel

Ex:

\[
\begin{align*}
\frac{du}{dt} &= f \\
\frac{u_n - u_{n-1}}{\Delta t} &= f_n \\
\text{discrete eqs.} &\Rightarrow \text{stability}
\end{align*}
\]

\[
U_n = U_{n-1} + \Delta t f_n
\]

\[
U_n = \sum \omega_k f_k
\]

\((1)\) intensive methods \(\Rightarrow f\)

\((2)\) extensive methods \(\Rightarrow \int f \, dt\)
Function approximation $u(x): \mathbb{R}^d \to \mathbb{R}$

Diffusion

Governing equation

$u(x,t)$: concentration

\[
\frac{\partial u}{\partial t} = \nabla \cdot (D(x,t) \nabla u)
\]

$D(x,t)$: Diffusion tensor

in Cartesian \mathbb{R}^3:

\[
D = \begin{pmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{yx} & D_{yy} & D_{yz} \\
D_{zx} & D_{zy} & D_{zz}
\end{pmatrix}
\]

D_{ij}: diffusion coefficient for gradients in direction i causing flux in dir. j.

- If $D(x,t) = D(x)$
 \[\Rightarrow\text{isotropic vs. anisotropic}\]
- D is not a function of x.
 \[\Rightarrow\text{homogeneous vs. inhomogeneous}\]
- D is not a function of t.
 \[\Rightarrow\text{normal vs. anomalous}\]

If isotropic & homogeneous & normal
\[
\frac{\partial u}{\partial t} = D \Delta u
\]
Anomalous Diffusion

below λ:

\[\langle x^2(t) \rangle \propto DT \]

Brownian motion

\[\langle x^2(t) \rangle \propto \alpha DT \]

\[\alpha > 1 \]

\[\Rightarrow \]

\[2\mu \frac{\partial n}{\partial t} = D \Delta n \]

\[\alpha < 1 \]

\[\Rightarrow \ t \]

\[\langle x^2(t) \rangle \propto DT^\alpha \]

\[\alpha \neq 1 \]

\[\Rightarrow \text{anomalous diffusion} \]

\[\langle x^2(t) \rangle \propto DT^\alpha = DT^{\alpha - 1} \]

\[\frac{\partial \tilde{D}(t)}{\partial t} = \tilde{D}(t) \frac{1}{t} \]

\[\alpha < 1 : \text{subdiffusion} \]

\[\alpha = 1 : \text{diffusion / Brownian diffusion} \]

\[\alpha > 1 : \text{superdiffusion} \]

\[\text{Lévy flights} \]
Random Walk (RW)

\[\frac{\partial u}{\partial t} = D \Delta u \quad \text{with} \quad u(x,0) = u_0(x) \]

Solution: Green's function

\[u(x,t) = \int \frac{g(x,y,t)u_0(y)}{\sqrt{4\pi D t}} \, dy \]

Green's function:

\[g(x,y,t) = \frac{1}{(4\pi D t)^{d/2}} e^{-\frac{|x-y|^2}{4Dt}} \]

Simulate Brownian motion of control volumes (\(\Rightarrow \)), then this is a numerical approx. of integral (\(\Rightarrow \))

\(\Rightarrow \) Monte Carlo integration
Particles: \(x_p(t), w_p = \psi\sigma(x_p) = \phi \)

\[
\begin{align*}
\frac{dx_p}{dt} &= \mathcal{N}(0,2D) + \mathbf{v} \\
\frac{dw_p}{dt} &= 0
\end{align*}
\]

Algorithm:

\text{Initialize:} \quad x_p(0) = \mathbf{v}\psi\sigma(x_p(0))

\text{Loop:} \quad d \sim \mathcal{N}(0,2D\Delta t)
\quad x_p = x_p + d
\quad t = t + \Delta t

\text{End:} \quad \sigma = \frac{1}{2\pi \Delta x} \geq \sum_{p \in \mathcal{P}} \exp[-\|x_p\|^2]

Choosing direction:

\(\theta \sim (0, \pi) \)

Step length: \(\sqrt{2D\Delta t} \)

\(\sqrt{2D\Delta t} \)

+)	 Easy to implement

+)	 Extends to more complex diffusions

+)	 Easy to include flows

-) Inaccurate error \(O(N^{-1/2}) \) for \(N \) particles.

-) Only works for "intermediate" \(D \) small \(D < \frac{2\Delta x}{\Delta t} \)

\[\text{error} = \mathcal{K}D/\sqrt{N} \]

-) Complicated in bounded domains.

\(M \) triangles
\(N \) particles
\(O(MN) \)
Particle Strength Exchange (PSE)

\[j = (m_2 - m_1) D \]

\[\frac{dw}{dt} = \Sigma F(\ldots) \]

\[\frac{du}{dt} = D \frac{\partial^2 u}{\partial x^2} \]

\[n(y) = u(x) + (y-x) \frac{du}{dx} + \frac{1}{2} (y-x)^2 \frac{\partial^2 u}{\partial x^2} + \frac{1}{6} (y-x)^3 \frac{\partial^3 u}{\partial x^3} + \ldots \]

\[\int_n \left(u(y) - u(x) \right) \frac{dE}{dE} (y-x) dy \]

Choose \[n \] to be:
1. Even \[\rightarrow \] all odd moments vanish
2. \[M_2 \{ n \} = 2 \]
3. \[M_i \{ n \} = 0 \]
\[\forall \ z < i \leq r+1 \]

\[\int_n \left(u(y) - u(x) \right) \frac{dE}{dE} (y-x) dy = \frac{D^2 u}{\partial x^2} \frac{\partial^2 E}{\partial x^2} + O(E^{r+2}) \]
\[\frac{2\varepsilon^2}{\partial x^2} \int (y-x)^2 \eta (y-x) dy = \int (y-x)^2 \eta \left(\frac{y-x}{\varepsilon} \right) \frac{1}{\varepsilon} dy \]

\[\eta \left(\frac{y-x}{\varepsilon} \right) = \frac{d\tilde{z} = \frac{1}{\varepsilon} dy}{\varepsilon^2 \tilde{z} \tilde{z}} \]

\[\Rightarrow \int \varepsilon^2 \eta (z) d\tilde{z} = \varepsilon^2 \eta (\varepsilon z) \]

\[\frac{\partial^2 u}{\partial x^2} = \frac{1}{\varepsilon^2} \left(\int (y-x) \eta (y-x) dy + o(\varepsilon^5) \right) \]

\[\Rightarrow \frac{\partial^2 u}{\partial x^2} = \frac{1}{\varepsilon^2} \sum_{q=1}^{N} \lambda_q \frac{1}{\varepsilon} \int \eta (x) \eta (x_q - x_p) \]

\[\lambda_q = \frac{\int \eta (x) \eta (x_q - x_p)}{q-1} \]

\[\frac{dx_p}{dt} = \sqrt{\varepsilon} \sum_{q=1}^{N} \left(\frac{\partial u}{\partial x} \right) \eta (x_q - x_p) \]

\[\frac{dx_q}{dt} = \frac{\sqrt{\varepsilon}}{2} \sum_{q=1}^{N} \left(\frac{\partial u}{\partial x} \right) \eta (x_q - x_p) \]

\[F(x_1, x_2, c_{x_1}, c_{x_2}) = \frac{\varepsilon D}{2} \sum_{q=1}^{N} (x_q - c_{x_q}) \eta (x_q - c_{x_q}) \]

+ arbitrarily accurate
+ fast \(\Theta(N) \)
+ include flows
+ easy in complex geometrics
+ easy flow
+ find good \(\eta \)
+ boundary conditions are hard.