Question 1: Calculations with operators
To train your skills in calculating with the operators in vector analysis you have been introduced to in the lecture, please prove the following statements. Let \(\mathbf{v} \) be a vector field and \(f \) a scalar field

a) \[\text{div}(f \mathbf{v}) = \mathbf{v} \cdot \text{grad} f + f \text{ div } \mathbf{v} \]

b) \[\text{div} \, \text{curl} \, \mathbf{v} = 0 \]

c) \[\text{curl} \, \text{curl} \, \mathbf{v} = \text{grad} \, \text{div} \, \mathbf{v} - \Delta \mathbf{v} \]

d) \[\text{div} \left(\mathbf{v}_1 \times \mathbf{v}_2 \right) = \mathbf{v}_2 \cdot \text{curl} \, \mathbf{v}_1 - \mathbf{v}_1 \cdot \text{curl} \, \mathbf{v}_2 \]

Question 2: Rotation of a rigid body
Consider a rotating rigid body with rotation axis in the origin \(O \). Let the position vector be \(\mathbf{r} = (x, y, z) \) and the angular velocity \(\omega = (\omega_1, \omega_2, \omega_3) \).

a) What is the velocity field \(\mathbf{v} \) of the rigid body?

b) Compute \(\text{curl} \, \mathbf{v} \). Given your result can you tell what quantity the operator \(\text{curl} \) is actually measuring?

Question 3: Flux in a Coulomb field
Consider an electric point charge \(e \) in the origin \(O \) of a cartesian coordinate system. Let \(\mathbf{v}(\mathbf{r}) \) be the corresponding electric Coulomb field with

\[\mathbf{v}(\mathbf{r}) = C \frac{e}{r^3} \mathbf{r} \]

with \(\mathbf{r} = (x, y, z)^T \) and \(r = \sqrt{x^2 + y^2 + z^2} \).
Calculate the flux \(\phi \) of a point charge through a sphere with radius \(R \) and origin \(O \).
Question 4: Potential fields

Let \(\mathbf{v} \) be a potential field with potential \(f \).

a) Show that \(\mathbf{v} \) is vortex-free.

Hint: Recall the definition of a potential field and your calculations in the self-test questions.

b) Let \(\mathbf{v}(\mathbf{r}) \) be a Coulomb field with

\[
\mathbf{v}(\mathbf{r}) = -\frac{C \mathbf{r}}{r^3}
\]

(6)

with \(\mathbf{r} = (x, y, z)^T \) and \(r = \sqrt{x^2 + y^2 + z^2} \) in cartesian coordinates. Show that \(\text{curl} \mathbf{v} = \mathbf{0} \).