Question 1: Eulerian versus Lagrangian description

We consider the following problem that in a one-dimensional flow, each fluid particle begins motion in the x direction at time $t = 0$ with velocity $u = Kx_0$ from point $x = x_0$ and continues at that speed.

a) Since each particle moves at constant velocity, its position, x, after a time t has elapsed is given by $x = x_0 + ut = x_0 + Kx_0 t$

The velocity and acceleration follow by taking the first and second partial derivatives, respectively, with respect to time.

Then, we find that the Lagrangian description of the motion is simply

- $x(x_0, t) = x_0(1 + Kt)$
- $u(x_0, t) = Kx_0$
- $a(x_0, t) = 0$

b) In the Eulerian framework, we focus upon a fixed value of x. Every fluid particle moves with constant velocity $u = Kx_0$ that depends only on its start location x_0. Thus, after a time t the distance travelled is $Kx_0 t$. By definition, the distance traveled is also $x - x_0$.

This leads to

$$x - x_0 = Kx_0 t \iff x_0 = \frac{x}{1 + Kt}$$

That is, a particle with velocity Kx_0 came from this point. Now, since $u = Kx_0$, we can express the velocity as a function of x and t. Hence, the motion in Eulerian form is described as follows:

- $u(x, t) = \frac{Kx}{1 + Kt}$
- $a(x, t) = \frac{d}{dt} u(x, t) = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -\frac{K^2 x}{(1 + Kt)^2} + \frac{Kx}{(1 + Kt)} \frac{K}{1 + Kt} = 0$

The velocity at a given point x decreases monotonically with time. Hence, the asymptotic velocity for large t that we observe at each x converges to 0. The asymptotic velocity for large t that we observe at each x converges to 0. This reflects the fact that as time goes by, we see a fluid particle that has traveled from an increasingly distant point, i.e., closer to $x = 0$. Clearly a particle closer to the origin has a smaller velocity. Thus, the velocity must indeed decreases as time passes.
Question 2: Conservation laws, diffusion and advection

We consider a chemical species C whose concentration $c(x,t)$ varies in time and space (one dimension x!). The situation is illustrated in Figure 1 where the chemical species C is contained in a long, thin tube with constant cross-section A.

Figure 1: Conservation in thin long tube (3D), with variables varying only in one dimension (from C.P. Fall, 2005)

Let us think of the slice between x_a and x_b as our ”control volume” V.

a) The intensive quantity in the set-up is the concentration $c(x,t)$ of the chemical species C (e.g. in units micromol/liter). Extensive quantities are e.g. the total mass m or the total amount N of C. We will focus on N in this exercise. The dimension of N is simply the number of particles, in biology often in units micromoles (One mole contains Avogadro’s number (approximately 6.022×10^{23}) entities).

The flux rate J has the dimension amount/area/time. The net rate of increase of C f has dimension amount/time/volume.

b) For the conservation law of the total amount of the C we need to specify the system as follows:

\[
\text{Total amount of } C \text{ in the control volume, i.e. in } [x_a, x_b] = \int_{x_a}^{x_b} c(x,t)A \, dx
\]

\[
\text{Net rate of entry of } C = AJ(x_a,t) - AJ(x_b,t)
\]

\[
\text{Net rate of production of } C = \int_{x_a}^{x_b} f(x,t,c(x,t))A \, dx
\]

Then, the conservation of the total amount of C reads in:

\[
\frac{d}{dt} \int_{x_a}^{x_b} c(x,t)A \, dx = AJ(x_a,t) - AJ(x_b,t) + \int_{x_a}^{x_b} f(x,t,c(x,t))A \, dx
\]

To get integral quantities, we can replace

\[
AJ(x_b,t) - AJ(x_a,t) = A \int_{x_a}^{x_b} \frac{\partial}{\partial x} J(x,t) \, dx
\]

and get

\[
\frac{d}{dt} \int_{x_a}^{x_b} c(x,t)A \, dx = - \int_{x_a}^{x_b} \frac{\partial}{\partial x} J(x,t) \, A \, dx + \int_{x_a}^{x_b} f(x,t,c(x,t))A \, dx
\]
If the function $c(x,t)$ is smooth enough, we can interchange integration and differentiation. Furthermore, we can get rid of A and get:

$$
\int_{x_a}^{x_b} \left[\frac{\partial}{\partial t} c(x,t) + \frac{\partial}{\partial x} J(x,t) - f(x,t,c(x,t)) \right] \, dx = 0 \tag{1}
$$

Since we did not assume anything about our control volume, this equation must hold for all control volumes. This can only be true if the integrand is zero, and we arrive at the differential form of the conservation law:

$$
\frac{\partial}{\partial t} c(x,t) + \frac{\partial}{\partial x} J(x,t) - f(x,t,c(x,t)) = 0 \tag{2}
$$

The general Reynolds transport theorem states:

$$
\frac{D\phi}{Dt} = \int_{V(t)} \left(\frac{\partial f}{\partial t} + \nabla \cdot (f \mathbf{v}) \right) dV(t) = \int_{V(t)} \frac{\partial f}{\partial t} dV(t) + \oint_{S(t)} f \mathbf{v} \cdot \mathbf{n} \, dS(t) \tag{3}
$$

for any intensive quantity f and the related extensive quantity $\phi = \int_V f \, dV$. Intuitively, this means: The temporal change of extensive property is equal the integral of the temporal change of intensive property plus the net flow out of the volume element. If we now compare equation (3) to the above derived equation (1) we can see that $\frac{\partial}{\partial t} c(x,t)$ corresponds to $\frac{\partial f}{\partial t}$ and $\frac{\partial}{\partial x} J(x,t)$ corresponds to $\nabla \cdot (f \mathbf{v})$. The term $f(x,t,c(x,t))$ in our derivation has not occurred in the lecture. f describes production and destruction of the chemical species c which is referred to as chemical reactions. Thus, we can call the derived equation (2) a general reactive flow equation.

In three dimension with $\mathbf{x} = (x,y,z)$ Equation (2) reads:

$$
\frac{\partial}{\partial t} c(x,t) + \nabla \cdot J(x,t) - f(x,t,c(x,t)) = 0 \tag{2}
$$

c) A constitutive equation is a relation between two physical quantities that is specific to a material or substance, and does not follow directly from physical laws. It is combined with other equations that do represent physical laws to solve some physical problem. Some constitutive equations are simply phenomenological; others are derived from first principles. Fick’s law states that the flux J is proportional to the concentration gradient, where the proportionality constant is the diffusion coefficient D (it is in general a rank-2 tensor, and a diffusion constant only under additional assumptions):

$$
J(x,t) = -D \frac{\partial}{\partial x} c(x,t)
$$

D is proportional to the velocity of the diffusing particles, which depends on the temperature, viscosity of the fluid and the size of the particles according to the Stokes-Einstein relation. For the biological molecules the diffusion coefficients normally range from $10^{-11} \text{m}^2 \text{s}^{-1}$ to $10^{-10} \text{m}^2 \text{s}^{-1}$.

If the flux in Equation (2) is described by Fick’s law, we get

$$
\frac{\partial}{\partial t} c(x,t) + \frac{\partial}{\partial x} \left(-D \frac{\partial}{\partial x} c(x,t) \right) - f(x,t,c(x,t)) = 0 \tag{4}
$$
which is the reaction-diffusion-equation in one dimension. In three dimensions Equation (4) reads:
\[
\frac{\partial}{\partial t} c(x, t) + \nabla \cdot \left(-D \nabla c(x, t) \right) - f(x, t, c(x, t)) = 0
\]
d) Assuming in addition a uniform macroscopic flow of the solvent, with speed \(\nu \) along the x-axis, the advective flux for our problem is given by:
\[
J(x, t) = \nu c(x, t)
\]
Hence, the advection-reaction-diffusion-equation in one dimension reads
\[
\frac{\partial}{\partial t} c(x, t) + \frac{\partial}{\partial x} \left(\nu c(x, t) - D \frac{\partial}{\partial x} c(x, t) \right) - f(x, t, c(x, t)) = 0
\] (5)
and the three-dimensional form is:
\[
\frac{\partial}{\partial t} c(x, t) + \nabla \cdot \left(\nu c(x, t) - D \nabla c(x, t) \right) - f(x, t, c(x, t)) = 0
\]

Question 3: The Cable equation

We consider our tube to be bounded by a membrane. We keep track of the electrical potential across the membrane, rather than the chemical species within the tube! The total current along the interior of the axon is \(I(x) \), positive from left \(x_a \) to right \(x_b \), and the transmembrane current per unit area \(I_T \), positive outward.

a) The conservation of current in the control volume with \(S \) being the circumference length of the tube is given by:
\[
I(x_a, t) - I(x_b, t) = \int_{x_a}^{x_b} I_T(x) S \, dx
\]
Using integral notation we can re-write this equation and get
\[
-\int_{x_a}^{x_b} \frac{\partial}{\partial x} I(x, t) \, dx = \int_{x_a}^{x_b} I_T(x) S \, dx
\]
for any control volume leading again to the differential expression:
\[
-\frac{\partial}{\partial x} I(x, t) = I_T(x) S \tag{6}
\]
b) The total transmembrane current \(I_T \) consists of two components, a capacity and an ion current. The capacity current results from the fact that we assume that our membrane, which consists of a lipid-bilayer, behaves like a capacitor. Hence, the current through the capacitor can be modelled as:
\[
I_{cap} = C_m \frac{\partial}{\partial t} V(x, t)
\]
where \(V \) is the transmembrane potential, assuming the extracellular electric potential to be a constant, and \(C_m \) is the capacitance of the membrane. Furthermore, we have
an ion current I_{ion} due to a diversity of channels that are permeable for certain ions leading to

$$I_T = I_{cap} + I_{ion} = C_m \frac{\partial}{\partial t} V(x, t) + I_{ion}$$

We can embed this expression in Equation (6)

$$-\frac{\partial}{\partial x} I(x, t) = S \left(I_{cap} + I_{ion} \right) = S \left(C_m \frac{\partial}{\partial t} V(x, t) + I_{ion} \right)$$

(7)

c) Finally, the constitutive equation for the relationship between the intracellular current I and intracellular voltage V is given by Ohm’s law:

$$I(x, t) = -\frac{A}{R_c} \frac{\partial}{\partial x} V(x, t)$$

(8)

Again, we assume that the extracellular electric potential is a constant. R_c is the cytoplasmic resistance (dimension [Ohm L]). Embedding this relationship into Equation (9) we arrive at the general Cable Equation:

$$\frac{\partial}{\partial x} \left(\frac{A}{R_c} \frac{\partial}{\partial x} V(x, t) \right) = S \left(C_m \frac{\partial}{\partial t} V(x, t) + I_{ion} \right)$$

(9)
Question 4: Conservation in the QS system

The QS is a coupled ODE/reaction-diffusion system. Outside the bacteria we have a normal diffusion equation for \(u_e \) with degradation, i.e. AHL molecules are allowed to deteriorate with rate \(\gamma \). Hence, we arrive at

\[
\frac{\partial}{\partial t} u_e(x, t) = D \Delta u_e - \gamma u_e
\]

(10)

for AHL concentration \(u_e \) outside the cells.

The tricky part of the model is the handling at the boundary between the extracellular matrix and the bacteria. Assume, we model the bacteria as a sphere with radius \(R \). Then, we model the exchange of AHL molecules by

\[
\left(-D \frac{\partial}{\partial \nu} u_e(x, t) \bigg|_{x=R} \right) = d_1 u_e(x, t) - d_2 u_c
\]

(11)

where \(\nu \) is the normal to the cell surface. Notice that \(x_c \) is taken to be homogeneous throughout the bacteria cytosol. The different rates \(d_1 \) and \(d_2 \) are due to active pumps for AHL-molecule trans-membrane transport.

The evolution of \(u_c \) inside the cell is influenced by the reaction term \(f(u_c) \) and the net inflow into the cell via the cell membrane:

\[
\text{Net inflow into the cell} = \int_{|x|=R} d_1 u_e(x, t) - d_2 u_c \, dx
\]

Hence, we arrive at the evolution equation

\[
\frac{d}{dt} u_c = f(u_c) + \int_{|x|=R} d_1 u_e(x, t) - d_2 u_c \, dx
\]

\[
= f(u_c) - 4\pi R^2 d_2 u_c + \int_{|x|=R} d_1 u_e(x, t) \, dx
\]

where we have used the surface area of the spherical cell \(S_{\text{cell}} = 4\pi R^2 \).

A word of caution about \(u_c \). In the QS paper the authors call \(u_c \) the mass of the substance within the cell. Then, \(d_1 \) and \(d_2 \) would have, however, different dimensions. It seems more convenient to think of \(u_c \) as a density as well, i.e. mass \((x_c) \) divided by the volume of the cell \(V_{\text{cell}} \) which is in our case very easy to calculate, namely \(V_{\text{cell}} = \frac{4}{3} \pi R^3 \).

Question 5: Something about numerics: Finite Volume methods

In the lecture, we derived the diffusion equation as follows: With density \(u(x, t) \) as intensive quantity and \(m = \int_V u \, dV \) as corresponding extensive quantity we find from mass conservation and using Gauss’ theorem

\[
0 = \frac{Dm}{Dt} = \int_{V(t)} \frac{\partial u}{\partial t} \, dV + \oint_{\partial V(t)} u\mathbf{v} \cdot \mathbf{n} \, dS.
\]

With Fick’s law \(u\mathbf{v} = -D \nabla u \) follows

\[
\int_{V(t)} \frac{\partial u}{\partial t} \, dV = \oint_{\partial V(t)} D \nabla u \cdot \mathbf{n} \, dS.
\]
For Finite Volume methods, each volume element $V_i(t)$ is taken finite but small enough for variations of u to be negligible. Then u can be assumed as constant throughout V_i, this value u_i is stored in a mesh point within V_i, and the left hand side $\int_{V_i(t)} \frac{\partial u}{\partial t} \, dV \approx \int_{V_i(t)} \frac{\partial u_i}{\partial t} \, dV = |V_i(t)| \frac{\partial u_i}{\partial t}$ can be discretised.

For the right hand side, let $V_1(t), \ldots, V_k(t)$ the neighbouring volume elements of V_i at time t. Then the surface $\partial V_i(t)$ can be split into disjoint parts $\partial V_i(t) \cap \partial V_j(t), \ j = 1, \ldots, k$, and each surface integral

$$\int_{\partial V_i(t) \cap \partial V_j(t)} D \nabla u \cdot \mathbf{n} \, dS$$

measures flux from one volume element (V_i) into another (V_j). As this expression occurs equally in each of the neighbouring volume elements, just with sign inverted because outer normal of V_i is inner normal of V_j on $\partial V_i \cap \partial V_j$, the Finite Volume methods are conservative.