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Abstract

This paper presents a highly efficient parallel particle–mesh (PPM) library, based on a unifying particle formulation for
the simulation of continuous systems. In this formulation, the grid-free character of particle methods is relaxed by the
introduction of a mesh for the reinitialization of the particles, the computation of the field equations, and the discretization
of differential operators. The present utilization of the mesh does not detract from the adaptivity, the efficient handling of
complex geometries, the minimal dissipation, and the good stability properties of particle methods.

The coexistence of meshes and particles, allows for the development of a consistent and adaptive numerical method,
but it presents a set of challenging parallelization issues that have hindered in the past the broader use of particle methods.
The present library solves the key parallelization issues involving particle–mesh interpolations and the balancing of pro-
cessor particle loading, using a novel adaptive tree for mixed domain decompositions along with a coloring scheme for the
particle–mesh interpolation.

The high parallel efficiency of the library is demonstrated in a series of benchmark tests on distributed memory and on a
shared-memory vector architecture. The modularity of the method is shown by a range of simulations, from compressible
vortex rings using a novel formulation of smooth particle hydrodynamics, to simulations of diffusion in real biological cell
organelles.

The present library enables large scale simulations of diverse physical problems using adaptive particle methods and
provides a computational tool that is a viable alternative to mesh-based methods.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A large number of physical problems can be modeled using particle-based methods. Particle descriptions
can be used for the simulation of continuum systems as in the case of discrete fluid or solid elements in smooth
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particle hydrodynamics (SPH) and vorticity-carrying fluid elements in vortex methods (VM); or for inherently
discrete systems as in gravitational particles for astrophysics, dissipative particle dynamics (DPD) for meso-
scale polymer descriptions, atomistic molecular dynamics (MD) simulations, and charged particles in plasma
physics [1].

While for discrete systems particle descriptions are the method of choice, this is not usually the case for the
simulation of continuum systems due to numerical and implementation issues. A number of recent works (see
[2] and references therein) have successfully addressed the numerical problems of particle methods and have
showcased their unique advantages for the simulation of continuum physical systems. These advantages
include adaptivity and multiresolution capabilities of the computational elements, good stability properties
of the discretization, and, similar to discrete systems, an inherent link of the computational elements to the
physics that they represent.

Nevertheless, the computational implementation of particle methods has prevented their widespread utili-
zation. A key difficulty is associated with their efficient parallelization and the unavailability of relevant sci-
entific libraries that would facilitate this task. In recent years, a number of efficient parallel particle-based
codes have been presented, allowing for billion particle simulations in MD and astrophysical SPH simulations.
These codes are, however, problem and in some cases machine specific and they do not provide the tools for
readily extending, for example, an SPH code to VM. Contrary to mesh based methods, where a number of
efficient libraries (e.g. Prometheus [3], Hypre [4]) has been developed, there is a shortage of libraries for particle
simulations, preventing the further development and application of the method across different disciplines.
The present work, to the best of our knowledge, addresses for the first time this deficiency.

The dynamics of particle methods are governed by the interactions of the N computational particles resulting
in an N-body problem with a computational cost that scales nominally asOðN 2Þ. For short-ranged particle inter-
actions, as in simulations of diffusion [5], the computational cost scales linearly with the number of particles. In
the case of long-range interaction potentials such as the Coulomb potential in electrostatics, the gravitational
potential in astrophysics, or the Biot-Savart law in VM, fast multipole methods (FMM) [6] reduce the compu-
tational cost to OðNÞ. Alternatively, long-range interactions can be described by equivalent field equations (such
as the Poisson equation) that can be solved using meshes, resulting in hybrid particle–mesh (PM) algorithms
[7,1]. The computational cost of hybrid methods scales as OðMÞ, where M denotes the number of mesh points
used for resolving the field equations. The choice between FMM and PM techniques is dictated by the boundary
conditions of the problem with FMM techniques allowing more flexibility on their specification, while PM
schemes are well suited for periodic systems. An important factor, distinguishing FMM and PM techniques,
is the parallelization efficiency of these methods, as the mesh regularity of the PM algorithm enables implemen-
tations that are typically one or two orders of magnitude faster than corresponding FMM [8,9] implementa-
tions. FMM-based particle methods have limited scalability for shared memory systems [10], while their
implementation in distributed memory systems is difficult due to the inherent global nature of the underlying
tree data structure. It is important to observe, however, that even when FMM are used for the evaluation of
the particle interactions, the need for hybrid PM algorithms is imperative in adaptive particle methods such
as VM or SPH for the reinitialization of the distorted particle locations [2].

The parallel implementation of PM techniques is hindered by several factors:

� exploiting the symmetry of the particle interactions requires sending back of ghost contributions to the
proper real particle,
� the simultaneous presence of particles and meshes prohibits a single optimal way of parallelization,
� complex-shaped computational domains and strong particle inhomogeneities require spatially adaptive

domain decompositions,
� particle motion may invalidate the existing domain decomposition causing rising load imbalance, and com-

plicates the implementation of multi-stage integration schemes,
� inter-particle relations constrain decompositions and data assignment.

State-of-the-art particle codes have successfully addressed some of aforementioned parallelization issues as
for example the electromagnetic PIC code QUICKSILVER [11], demonstrating a parallel efficiency of 60%
solving a scaled-size irregular case on 1024 processors, while achieving 90% efficiency in the ideal uniform load
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case on 3200 processors. For purely particle-based simulations a number of application-specific parallel soft-
ware libraries is also available, such as PARTI for Monte-Carlo simulations [12], or the parallel utilities
library (PUL) [13]. Recent hybrid PM implementations include VORPAL [14] for plasma simulations and
the particle-in-cell code PICARD [15].

While these codes provide a development platform for certain classes of particle methods, they do not allow
generalizations to other classes of particle methods. For example PICARD and VORPAL have been designed
for PIC simulations and they can be used for load balancing and domain decomposition. Beyond these two
aspects, however, they cannot be used for developing SPH, VM, or MD codes.

The present work bridges the gap between general-purpose infrastructure libraries and application-specific
simulation libraries, and provides a general-purpose parallel framework that can handle particles-only, mesh-
only, as well as hybrid particle–mesh systems. The presented parallel particle–mesh (PPM) library is portable
through the use of standard languages (Fortran 90 and C) and libraries (MPI) and is applicable on single
processor machines as well as on distributed memory, shared memory, and vector parallel processors. Compu-
tational efficiency is achieved by dynamic load balancing, dynamic particle re-distribution, explicit message
passing, and the use of simple data structures. The library core provides several adaptive domain decomposi-
tion schemes, multiple processor assignment methods, load balance monitoring, dynamic load balancing, data
mapping (sending, receiving), update of overlap regions, parallel file I/O, optimized inter-processor communi-
cation, neighbor lists (cell lists and Verlet lists [16]), routines for building trees, particle-to-mesh, and mesh-
to-particle interpolation. This core infrastructure is supplemented with commonly used numerical methods
such as mesh-based solvers, evaluation of differential operators on particles [17], FMM, parallel FFT, and
multi-stage ODE integrators. Moreover, the PPM library provides bindings for the external libraries fftw,
Math-Keisan FFT (NEC Inc.), and Metis (for graph partitioning for load assignment [18]).

The library has been successfully used in the development of a number of particle codes enabling state-
of-the-art calculations as discussed in Section 4 of this paper. The key concepts of PPM and the implemented
functionality are described in Sections 2 and 3. In Section 4, the use of PPM in various areas of computational
physics, science, and engineering is demonstrated by presenting prototype simulation codes that have been
developed on the basis of PPM. Parallel timings, speedup, and efficiency are shown for each example, demon-
strating the high parallel efficiency of the present library.

The library is intended as the founding step in establishing an open source program for the development
and implementation of particle methods.

2. Particle–mesh algorithms for the simulation of continuum systems

Particle methods are based on the replacement of functions and differential operators by equivalent inte-
gral representations that are being discretized using the particle locations and weights in a quadrature [2].
The simulation of the physical system amounts then to tracking the dynamics of N particles that carry the
physical properties of the system that is being simulated. The dynamics of the particles are governed by ordin-
ary differential equations (ODEs) that determine the trajectories of the particles p and the evolution of their
properties x:
dxp

dt
¼ uðxp; tÞ ¼

XN

q¼1

Kðxp; xq; xp;xqÞ; p ¼ 1; . . . ;N ; ð1Þ

dxp

dt
¼
XN

q¼1

Fðxp; xq; xp;xqÞ; p ¼ 1; . . . ;N ; ð2Þ
where xp the position of particle p, up its velocity, and xp the vector of particle properties such as concentra-
tion, charge, vorticity, or temperature. The dynamics of the simulated physical system are represented by the
functions K and F that represent solutions of scalar or vector field equations (such as Poisson equations for
velocity–vorticity formulations of the Navier–Stokes equations in VM) or integral representations of differen-
tial operators (such as Laplacian operators in SPH). In PM methods, the functions K and F are evaluated on a
mesh through the corresponding field equation. The hybrid method requires:
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� the interpolation of the xp carried by the particles from the irregular particle locations xp onto the regular
mesh points (xm)
xm ¼
XN

p¼1

Qðxm � xpÞxp; m ¼ 1; . . . ;M ; ð3Þ
� the interpolation of the field quantities Fm from the mesh to the particle locations (Fp)
Fp ¼
XM

m¼1

Rðxp � xmÞFm; p ¼ 1; . . . ;N . ð4Þ
The accuracy of the method depends on the smoothness of K and F, on the interpolation function, and on
the discretization scheme employed for the solution of the field equations. To achieve high accuracy, the inter-
polation functions Q and R must be smooth to minimize local errors, and conserve the moments of the inter-
polated quantity to minimize far-field errors. In addition, it is necessary that Q is at least of the same order of
accuracy as R, to avoid spurious forces [1]. This can be easily achieved by selecting the same type of interpo-
lation, W, for both operations: Q = R = W.

3. The PPM library

3.1. Fundamentals

The use of the PPM library requires that the simulated systems are formulated in the framework of PM
algorithms as outlined in the preceding section. The field equations are solved using structured or uniform
Cartesian meshes. As a result, the physical and computational domains are rectangular or cuboidal in two
and three dimensions. Complex geometries are handled by immersed boundaries, through the use of source
terms in the corresponding field equations, or through boundary element techniques. Adaptive meshing capa-
bilities are possible using AMR concepts as adapted to particle methods [19].

The simultaneous presence of particles and meshes requires different concurrent domain decompositions.
These decompositions divide the computational domain into a minimum number of cuboidal sub-domains

with sufficient granularity to provide adequate load balancing. The concurrent presence of different decompo-
sitions allows to perform each step of the computational algorithm in its optimal environment with respect to
load balance and the computation-to-communication ratio. For the actual computations, the individual sub-
domains are treated as independent problems and extended with ghost mesh layers and ghost particles to allow
for communication between them.

The PPM library supports connections/relations between particles such as particle pairs, triplets, quadruplets,
etc. These relations may describe a physical interaction, such as chemical bonds in molecular systems, or a spa-
tial coherence, such as a triangulation of an immersed boundary or an unstructured mesh.

Memory for internal lists and communication buffers is allocated by the PPM library. All other memory,
such as simulation data (particles, fields) and index lists (cell lists, Verlet lists, etc.), is held by the client appli-
cation. This ensures user-control over the data and allows multiple different sets of particles, connections, and
fields to be used concurrently. The number of topologies, sub-domains, particle sets, fields, and meshes is only
limited by the cumulative memory capacity of all processors.

3.2. Topologies

A topology is defined by the decomposition of space into sub-domains with the corresponding boundary
conditions, and the assignment of these sub-domains onto processors. Multiple topologies may co-exist and
library routines are provided to map particle and field data between them (cf. Section 3.3). Fields are defined
on meshes, which in turn are associated with topologies. Every topology can hold several meshes. The only
constraint is that sub-domain boundaries must align with mesh lines/planes.

As the domain decomposition may take several seconds to complete, a given topology is assumed to persist
through longer periods of the simulation. For problems with free-space boundary conditions, the extent of the
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computational domain is adjusted in order to enclose all particles at any time. An extra margin may be added
to the computational domain to avoid repeated update of the topology. For problems in confined systems,
subject to, e.g. periodic boundary conditions, the extent of the computational domain is fixed and the decom-
position is performed filling the entire space, disallowing void space(s). This assures that particles cannot leave
the computational domain, which would require an immediate, potentially expensive, re-decomposition.

In order to achieve good load balance, both the load distribution and the computational cost of the topol-
ogy creation are monitored throughout the simulation. The SAR heuristic [12] is used in the PPM library to
decide when problem re-decomposition is advised, i.e., when the cost of topology re-definition is amortized by
the gain in load balance. Moreover, all topology definition routines can account for the true computational
cost of each particle, for example defined by the actual number of its interactions. A routine is provided to
compute this number based on the lengths of Verlet lists.

3.2.1. Domain decompositions

The PPM provides a number of different adaptive domain decomposition techniques for particles, meshes,
and volumes, the latter defining geometric sub-domains with neither meshes nor particles present. These
decompositions currently include: recursive orthogonal bisection, x-, y-, and z-pencils, xy-, xz-, and yz-slabs,
cuboids, and a user-defined decomposition. Recursive orthogonal bisection is based on an adaptive binary tree
(cf. Section 3.9), where subdivisions are allowed in all spatial directions. Pencil decompositions prohibit sub-
divisions in one direction, resulting in an adaptive decomposition where each sub-domain extends over the
whole computational domain in at least one spatial dimension. Such decompositions are useful when perform-
ing fast Fourier transforms. In slabs, two directions are fixed. Cuboids are created using adaptive quad- and
oct-trees in two and three dimensions, respectively, and the user-defined decomposition allows the client pro-
gram to explicitly specify the sub-domains. After checking the validity of such a decomposition, the PPM
library directly proceeds with assignment of the sub-domains to the processors.

In addition, a special null decomposition is provided, that does not perform any domain decomposition. It
creates only one ‘‘sub-domain’’ which is the computational domain itself. This trivial ‘‘decomposition’’ is used
to evenly distribute the particles among processors, irrespective of their spatial location. The resulting special
topology is called the ring topology and the sub-domain is assigned to every processor. The ring topology sup-
ports full OðN 2Þ calculations, and also allows to distribute data of initially unknown processor affiliation (cf.
Sections 3.3 and 3.4).

To assess the performance of the different domain decomposition schemes, we compare them on four test
cases using 16 processors (Table 1). The quality of decomposition is quantified by the standard deviation of
the number of particles across processors and by the total number of ghost particles needed to communicate
the boundaries. The domain is decomposed using a non-adaptive binary tree, recursive orthogonal bisection
(ROB), and an adaptive oct-tree. The subdomains are assigned onto the processors in an optimal way, min-
imizing the total length of communication boundaries. This assignment is performed using the external library
Metis [18]. One million particles are distributed in the unit cube in four ways: uniformly, on a diagonal from
Table 1
Comparison of different domain decomposition schemes on four test problems

Particle distribution Non-adaptive tree ROB Adaptive oct-tree

Standard deviation of particles per processor

Uniform 422 268 265
Sphere 62,501 1865 2626
Spiral 73,350 2336 6011
Diagonal line 108,255 148 161

Average number of ghost particles per processor

Uniform 33,847 33,832 33,750
Sphere 35,268 36,526 28,187
Spiral 10,584 31,102 22,297
Diagonal line 20,050 28,940 46,232
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the point (0,0,0) to the point (1,1,1), on the surface of a sphere with radius 0.25, and on a spiral. The compu-
tational time needed to construct the topologies is about 30 ms per subdomain in all cases.

3.2.2. Assignment of sub-domains onto processors
Load balancing in the PPM library comprises two main components: domain decomposition and assign-

ment of sub-domains onto processors. While the former has to ensure sufficient granularity and partitioning
of the computational cost, the latter has to ensure even distribution of computational load among processors,
accounting for possible differences in processor speeds. The computational cost for each sub-domain, as deter-
mined by the number of particles, the number of mesh points, or the true computational cost, is known from
the domain decomposition step. The individual processor speeds are measured internally by the PPM library.

Using this information, PPM provides several methods of assigning the sub-domains to the processors. The
PPM-internal method assigns contiguous blocks of sub-domains to processors until the accumulated cost of a
processor is greater or equal to the theoretical average cost under uniform load distribution. The average is
weighted with the relative processor speeds. In addition, four different Metis-based [18] assignments, and a
user-defined assignment are available.
3.2.3. Boundary conditions

At the external boundaries of the computational domain Neumann, Dirichlet, free space, symmetric, and
periodic boundary conditions are supported. These conditions complement the particular mesh-based solver
that is being employed. More involved boundary conditions and complex boundary shapes are represented
inside the computational domain by defining connections among the particles, or using immersed interfaces.
3.3. Mapping

PPM topologies implicitly define a data-to-processor assignment. Mapping routines provide the function-
ality of sending particles and field blocks to the proper processor, that is the one that ‘‘owns’’ the correspond-
ing sub-domain(s) of the computational space. Three different mapping types are provided for both particles
and field data:

1. a global mapping which involves an all-to-all communication,
2. a local mapping for neighborhood communication, and
3. ghost mappings to update the ghost layers.

In addition, a special ring shift mapping is provided for particle data on the ring topology, and a connection

mapping is provided for taking into account links between particles.
The global mapping is used to perform the initial data-to-processor assignment or to switch from one topology

to another, whereas the local mapping is mainly used to account for particle motion during a simulation. Com-
munication is scheduled by solving the minimal edge coloring problem using the efficient approximation algo-
rithm by Vizing [20–22]. Ghost mappings are provided to receive ghost particles or ghost mesh points, or to
send ghost contributions back to the corresponding real element, for example after a symmetric particle–particle
interaction or a particle-to-mesh interpolation. The ring shift mapping sends data-sets around all processors,
while each processor keeps a local copy of its original data. After every ring shift, each processor can perform
its operations using the original local data-set as well as the current traveling set. During a complete cycle, all pos-
sible pair interactions will thus be considered. Finally, connection mappings are provided to distribute connec-
tions among processors according to an existing distribution of particles, and to update connection lists when
particles have moved across processor boundaries.

All mapping types are organized as stacks. A mapping operation consists of 4 steps: (1) defining the map-
ping, (2) pushing data onto the send stack, (3) performing the actual send and receive operations, and (4) pop-
ping the data from the receive stack. This architecture allows data stored in different arrays to be sent together
to minimize network latency, and mapping definitions to be re-used by repeatedly calling the push/send/pop
sequence for the same persistent mapping definition.
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Mappings of field data can be masked. An optional binary mask selects which mesh points are to
be mapped and which ones are not. The values of non-mapped points remain unaffected by the mapping
operation.

3.4. Particle–particle interactions

The evaluation of particle–particle (PP) interactions is a key component of PM algorithms. Sub-grid scale
phenomena can require local particle-based corrections, differential operators can be evaluated on irregular
locations [17], or the main dynamics of the system can be governed by particle interactions.

The PPM library implements PP computations using cell lists, Verlet lists, or the full OðN 2Þ direct method.
Both symmetric and non-symmetric interactions are supported, the former to reduce the amount of duplicated
work. In each method, the interaction potential or kernel can be specified either by a function pointer to a user
function, by passing a look-up table of kernel values, or by choosing one of the predefined PPM-internal
kernels.

The direct evaluation makes use of the PPM ring topology (cf. Section 3.2.1) and the ring shift mapping (cf.
Section 3.3) to compute all N2 pair interactions. Cell lists are provided for local (short range) interactions.
Hereby, particles are sorted into equisized cuboidal cells, whose size reflects the interaction cutoff. In PPM,
cell lists are defined per sub-domain and ghost cells are used around each sub-domain. Fig. 1 illustrates the
cell–cell interactions in asymmetric and symmetric evaluations. To achieve complete symmetry, a novel inter-
action scheme involving diagonal interactions is introduced. This scheme reduces the amounts of memory
overhead and communication for symmetrically evaluated particle interactions by 33% in two dimensions
and 40% in three dimensions. Given the cells are numbered in ascending x, y, (z), starting from the center cell
with number 0, the cell–cell interactions in PPM are: 0–0, 0–1, 0–3, 0–4, and 1–3 in two dimensions, and 0–0,
0–1, 0–3, 0–4, 0–9, 0–10, 0–12, 0–13, 1–3, 1–9, 1–12, 3–9, 3–10, and 4–9 in three dimensions. The difference
between symmetric and non-symmetric PP interactions is measured using the PSE diffusion problem (cf. Sec-
tion 4.3). The computational time per time step is found to decrease by a factor of 1.72 when going from asym-
metric to symmetric interactions. Due to the additional overhead caused by sending back the ghost
contributions, this factor is below 2.

For spherically symmetric interactions, cell lists contain up to 27/(4p/3) = 81/(4p) � 6 times more particles
than actually needed. Verlet lists [16] are provided to reduce this overhead. For each particle they involve an
explicit list of all other particles it has to interact with.

Besides PP interactions, PPM also supports interactions based on inter-particle connections. Neighbor lists
are not required in this case since a connection is an explicit list of all its member particles. Connection inter-
actions are supported by separate routines.

Alternatively, the client program can implement its own interaction routines. Template subroutines are
provided for the use of cell lists, Verlet lists, direct interactions, and connection interactions.
Fig. 1. Cell–cell interactions and ghost-layer arrangement. (a) For non-symmetric particle–particle interactions, the ghost layer (blue)
extends all around the sub-domain. Interactions are one-sided. (b) In traditional symmetric cell list algorithms, ghost layers are required on
all but one boundary of the domain. (c) In PPM, diagonal interactions are introduced (1–3). Ghost layers are now symmetric and do not
overlap with any other ghost layers of neighboring sub-domains. This results in less communication, better scaling in memory and simpler
algorithms (e.g. when considering connected particles). The two-dimensional case is depicted. See text for interactions in the three-
dimensional case. (For interpretation of the references to colors in this figure legend, the reader is referred to the web version of this paper.)
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In addition to the routines performing the actual computations, the PPM library also provides a routine to
create look-up tables from either a function pointer or an internal kernel. Such tables can then be passed to
any of the compute routines for the evaluation.

3.5. Particle–mesh and mesh–particle interpolations

All hybrid PM methods involve interpolation of irregularly distributed particle quantities from particle
locations onto a regular mesh and interpolation of field quantities from the grid points onto particle locations.

These interpolations are utilized for two purposes, namely:

� the communication of the particle solver with the field solver;
� the reinitialization of distorted particle locations.

While the first issue is a well-established notion in PM techniques, the reinitialization of particle locations
and weights when particle locations get distorted by the flow map is a critical, albeit often overlooked, aspect
of particle methods for the simulation of continuous systems [2]. Particle overlap is needed in order to ensure
convergence of the method and this is achieved by periodically reinitializing particles onto a regular mesh
(‘‘remeshing’’). This involves the interpolation of particle properties onto the mesh and replacing the current
set of particles by new particles created at the locations of the mesh points.

The PPM library provides routines that perform these operations. The interpolation weights W(xm � xp)
can be pre-computed and stored to facilitate adjustments of the interpolation or interpolate several sets of
quantities. If the weights are not pre-computed, they are determined during the actual interpolation. Cur-
rently, implemented interpolants include first and second order B-Splines and the M 0

4 function [23].
The interpolation of mesh values onto particle locations readily vectorizes: the interpolation is performed

by looping over the particles and receiving values from mesh points that lie in the support of the interpolation
kernel. Therefore, the values of individual particles can be interpolated independently.

The interpolation of particle values onto mesh locations, however, leads to data dependencies as the inter-
polation is still performed by looping over particles, but a mesh point may receive values from more than one
particle. To circumvent this problem, the PPM library implements the following technique [24]: when new par-
ticles are created in the course of remeshing, we assign colors to the particles such that no two particles within
the support of the interpolation kernel have the same color. Particle-to-mesh interpolation then visits the par-
ticles ordered by color to achieve data independence. This coloring scheme enables vectorization of particle-
to-mesh interpolations as confirmed by a test on the NEC SX-5 vector computer (Table 2). Without this
coloring scheme, interpolation in hybrid particle–mesh methods would be prohibitively expensive on vector
architectures.

3.6. Mesh-based solvers

In PPM, meshes can be used to solve the field equations associated with long-range particle interactions [1]
or to discretize the differential operators in the governing equations of the simulated physical system. These
operators are often local and their computational cost scales linearly with the number of particles or mesh
points.

A large class of pair potentials in particle methods can be described by the Poisson equation as it appears
in MD of charged particles via electrostatics (Coulomb potential), fluid mechanics in stream-function vorticity
Table 2
Comparison of the vector performance of classical particle-to-mesh interpolation and the present coloring scheme

CPU time (s) Vector operation ratio (%) Vector length (words)

Colored 2.69 99 230.6
Classical 30.1 0.36 4.1
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formulation (Biot-Savart potential), and astrophysics (gravitational potential). The Poisson equation is
expressed as
r2U ¼ qðx; y; zÞ. ð5Þ

The PPM library provides Poisson solvers based on FFTs and geometric MultiGrid (MG).

The FFT-based Poisson solver parallelizes a multi-dimensional FFT using a sequence of one- or two-
dimensional FFTs performed on pencil and slab topologies (cf. Section 3.2.1). A single three-dimensional
Fourier transform thus consists of mapping the data onto a temporary xy-slab topology, performing a two-
dimensional FFT, mapping onto a temporary z-pencil topology, and performing a one-dimensional FFT. The
actual serial one-dimensional or two-dimensional FFTs are performed using the external libraries fftw or
Math-Keisan (on NEC SX vector architectures).

The geometric MG method is implemented in PPM as a fast iterative method for solving the Poisson equa-
tion. The advantage of parallel MG solvers consists in restricting communication to the ghost layers whereas
the corresponding FFTs require several global mappings. The PPM MG supports both the V and W cycle [25].
The Laplacian is discretized using five and seven point stencils in two and three dimensions, respectively. As
residual smoother we employ the red-black successive over-relaxation scheme, which includes the Gauss–
Seidel smoother as a special case. Furthermore, the full-weighting scheme [25] is used for the restriction of
the residual, and bilinear (in two dimensions) or trilinear (in three dimensions) interpolation for the prolon-
gation of the function corrections [25].
3.7. ODE solvers

Simulations using particle methods entail the solution of systems of ODEs as outlined in Section 2. The
characteristics of the initial value problems (IVP) represented by these ODEs explicitly reflect the physics
of the system that is being simulated.

The PPM library provides a set of explicit integration schemes to solve these IVPs. The ODE solver of PPM is
designed as a ‘‘black-box’’ solver. The user selects the method to be used and provides as a function pointer a
routine that computes the right-hand sides of the ODEs. Both allocation of storage (for the stages of multi-step
schemes) and the actual computation of the stages is performed by the library. Second order ODEs are solved by
transforming them into a system of first order problems and parallelism is achieved by mapping the integrator
stages along with the other particle quantities (cf. Section 3.3). Thus, at the last stage of the integrator, the pre-
vious stages are available on the processor that currently hosts the particles, and the final particle update is com-
pleted without further communication. Low-storage schemes have the additional advantage of requiring little
communication. The set of available integrators includes forward Euler with and without super time stepping
[26], 2-stage and 4-stage standard Runge–Kutta schemes, Williamson�s low-storage third order Runge–Kutta
scheme [27], and 2-stage and 3-stage TVD Runge–Kutta schemes [28].
3.8. Parallel I/O

File I/O in distributed parallel environments exist in two different modes: distributed and centralized. By
distributed we denote the situation where each processor writes its part of the data to its local file system. Cen-
tralized I/O on the other hand will produce a single file on one of the nodes, where the data contributions from
all processors are stored. The latter is convenient for small or aggregated data, or for writing files that will later
be read on a different number of processors, e.g. to continue an interrupted simulation.

The PPM library provides a parallel I/O module which supports both binary and ASCII read and write
operations in both modes, distributed and centralized. The I/O mode is transparent to the client application.
Write operations in the centralized mode can concatenate or reduce (sum, replace) the data from individual
processors; read operations can transparently split the data in equal chunks among processors or send an iden-
tical copy to each one. The basic assumption behind the split mode is that no processor will be able to hold all
the data in memory at any time. To improve performance of the centralized mode, network communication
and file I/O are overlapped in time using non-blocking MPI calls.
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3.9. Adaptive trees

A novel general tree construction is provided for both internal and client use. It supports both non-adaptive
and adaptive binary trees, quad-trees, and oct-trees. At any stage of the tree, the space is subdivided into M
boxes {Bk}. The indices i and j are used to denote coordinate directions. Adaptivity and subdivision behavior
are guided by two cost functions /1 and /2. Both cost functions are linear combinations of the three cost con-
tributions: particle costs cp (user-specified or unity per particle), mesh points (number of mesh points in the
box mB = �mB,i), and geometry (volume of the box |B| = � |B|i), with user-provided coefficients a, b, c
/f1;2gðBkÞ ¼ af1;2g
X
p2Bk

cp þ bf1;2gmBk þ cf1;2gjBkj. ð6Þ
The first cost function /1 guides adaptivity of the tree since the next subdivision will be applied to the box BK

of largest /1. The second cost function /2 defines the direction(s) of subdivision and position of the subdivi-
sion plane(s). Suppose BK is to be subdivided next. In order to create the minimum /2-cut when subdividing a
box, the tensor of intertia T is computed from the particle locations xp = (xp,i) and costs cp as:
T ii ¼
X
p2BK

X
j 6¼i

x2
p;j

 !
cp; T ij ¼

X
p2BK

xp;ixp;jcp. ð7Þ
The eigenvectors vr of T are scaled with the corresponding eigenvalue kr: mr = kr(vr/|vr|) and projected onto the
unit coordinate vectors ei. The number of mesh points in this direction mB,i and the length of the box in this
direction |B|i are normalized and added to form a score value s for each coordinate direction
sðeiÞ ¼ a2

X
r

ei � mr þ b2

X
j

mBK ;j

 !�1

mBK ;i þ c2

X
j

jBK jj

 !�1

jBK ji. ð8Þ
The subdivision directions (1, 2, or 3) are chosed in order of ascending score. The client program can however
specifically disallow subdivisions in certain directions to enforce pencil-type or slab-type boxes. The actual po-
sition of a cut perpendicular to direction I is determined as the corresponding component of the center of mass
of /2 within the box BK
/2ðBKÞ�1 a2

X
p2BK

xp;I cp þ lIðBKÞ b2mBK þ c2jBK jð Þ
" #

; ð9Þ
subject to the constraint that a client-specified minimum box size is not under-run. Here, l(Bk) = (li(Bk))
denotes the geometric center of box Bk. To terminate the tree, multiple concurrent termination criteria can
be prescribed.
4. Benchmarks and results

The parallel efficiency of the library is measured based on the following five tests:

1. the solution of the scalar Poisson equation using FFTs,
2. the solution of the scalar Poisson equation using geometric MG,
3. simulation of protein diffusion in the endoplasmic reticulum (ER) of live cells,
4. simulation of compressible viscous flow induced by a double shear layer using remeshed smooth particle

hydrodynamics (rSPH), and
5. simulations of an incompressible viscous double shear layer using VM.

In addition, we illustrate the application of the library to problems in fluid dynamics with the simulation of
a compressible vortex ring using rSPH and with the simulation of Crow and elliptic instabilities of trailing
anti-parallel vortex tubes in an incompressible fluid using VM.



576 I.F. Sbalzarini et al. / Journal of Computational Physics 215 (2006) 566–588
Performance of the PPM library is tested for both a fixed-size and a scaled-size problem for all cases except
the diffusion simulation. In the fixed-size problems, the number of mesh points and particles is kept constant,
i.e., the work load per processor decreases with increasing number of processors. In the scaled problems, mesh
point and particle numbers grow proportionally to the number of processors, resulting in a constant work
load per processor. Timings and parallel efficiency figures are collected on the IBM p690 computer of the Swiss
National Supercomputing Centre (CSCS). The machine consists of 8 Regatta nodes with 32 1.3 GHz Power4
processors per node. Within each node, it is configured in 4 groups with 8 processors sharing 12 GB of mem-
ory. Each processor has a peak performance of 5.2 GFlop/s, and the nodes are connected by a 3-way Colony
switch system.

In each test, we measure the elapsed wall-clock time tij for each time step j on each processor i = 1, . . . ,Nproc.
To account for synchronous communication steps, we report the maximum of these times over all processors.
This maximum is averaged over 5–10 samples to compute speedup S and efficiency e:
Fig. 2.
points
averag
SðN procÞ ¼
tð1Þ

meanjmaxitijðNprocÞ
� NðN procÞ

Nð1Þ ; ð10Þ

eðNprocÞ ¼
SðNprocÞ

N proc

; ð11Þ
where t(1) is the time on a single processor (linearly extrapolated if not measured), tij(Nproc) is the time on
Nproc processors, N(1) is the problem size on a single processor, and N(Nproc) is the problem size on Nproc pro-
cessors. To account for the OðN log NÞ scaling of the FFTs, the second factor of the speedup is accordingly
adjusted in the benchmarks of the FFT-based Poisson solver.

Vectorization and parallel efficiency on vector machines are tested using the NEC SX-5 computer at CSCS.
This is a shared memory machine with 16 NEC SX-5 vector processors. Each processor has a peak perfor-
mance of 8 GFlop/s and 64 vector registers of a length of 256 words (2048 Bytes) each.

In addition to the benchmark tests, simulations are performed on a distributed memory cluster consisting
of 16 2.2 GHz AMD Opteron 248 processors running under Linux. The nodes of this cluster are connected by
a switched gigabit ethernet network.

4.1. Parallel FFT-based Poisson solver

We test the parallel performance of the FFT-based Poisson solver and compare it to the MG solver by solv-
ing the same scalar Poisson equation (5) with the same right hand side Eq. (12), subject to periodic boundary
conditions. All Fourier transforms are performed using the parallel FFT routines of the PPM library as
described in Section 3.6.

The parallel speedup and efficiency for the scaled problem as shown in Fig. 2 exhibit two characteristic
regions. The first one ranges from 1 to 8 processors, the second one from 8 and beyond. From 1 to 8 processors
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Parallel speedup and efficiency of the FFT-based Poisson solver for the scaled-size problem starting with 128 · 128 · 128 mesh
on one processor (+). Using only one processor per node, the bottleneck of the shared memory is removed (·). Each point is
ed from 5 samples, error bars indicate min–max span. All timings are performed on the IBM p690.
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the efficiency drops significantly, due to conflicts and congestion in the shared memory architecture. This is ver-
ified in a separate benchmark (Fig. 2: ·), in which only one processor per node is used. In this case, the con-
gestion is removed and the efficiency significantly improves to 68% on 16 processors for the scaled case.
Solving the Poisson equation to machine precision on a 128 · 128 · 128 mesh takes 0.6 seconds on a single pro-
cessor. The corresponding scaled system on 64 processors (512 · 512 · 512) requires 2.4 s. Speedup and effi-
ciency for the fixed-size problem are shown in Fig. 3. Again, the scaling improves beyond 8 processors,
similar to the scaled case.

4.2. Parallel multigrid Poisson solver

We test the performance of the PPM MG field solver by solving the scalar Poisson equation (5) with the
right hand side
Fig. 3.
4–128

Fig. 4.
is 256
shared
IBM p
qðx; y; zÞ ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞ; x; y; z 2 ½0; 1�; ð12Þ

subject to periodic boundary conditions. The initial value of U is zero everywhere and we use the V(2,1) cycle
with one smoothing step at the finest level.

We conduct three tests. The first involves the fixed case with 256 · 256 · 256 mesh points, while the two others
are scaled cases, one starting from a 128 · 128 · 128 mesh, the other one starting from 256 · 256 · 256. Effi-
ciency and speedup for the scaled cases are shown in Fig. 4 and for the fixed case in Fig. 5. We observe a strong
decrease in the parallel efficiency up to 8 processors due to the congestion of the shared memory. This is removed
when using only one processor per node in a pure distributed memory setup, cf. Figs. 4 and 5, and the efficiency
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Parallel speedup and efficiency of the FFT-based Poisson solver for the fixed-size problem with 512 · 512 · 512 mesh points on
processors. Each point is averaged from 5 samples, error bars indicate min–max span. All timings are performed on the IBM p690.
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Parallel speedup and efficiency of the MG Poisson solver for the scaled-size problem. The initial mesh resolution on one processor
· 256 · 256 (+) and 128 · 128 · 128 (·), respectively. Using only one processor per node in the large case, the bottleneck of the
memory is removed (*). Each point is averaged from 5 samples, error bars indicate min–max span. All timings are performed on the
690.



100

101

102

103

 1  2  4  8  16  32  64  128  256
0.0

0.2

0.4

0.6

0.8

1.0

 1  2  4  8  16  32  64  128  256

Sp
ee

du
p

NprocNproc

E
ff

ic
ie

nc
y

Fig. 5. Parallel speedup and efficiency of the MG Poisson solver for the fixed-size problem with 256 · 256 · 256 mesh points on 2–128
processors (+). Using only one processor per node in the large case, the bottleneck of the shared memory is removed (·). Each point is
averaged from 5 samples, error bars indicate min–max span. All timings are performed on the IBM p690.
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improves to 90% on 16 processors for the scaled case. The effective efficiency based on the timing obtained on 8
processors is 92% for the large scaled case on 64 processors. The efficiency of the PPM MG solver for a 1024 ·
1024 · 1024 system is 66% for the large scaled case on 64 processors. For this system, the elapsed time is 10.5 s
per V-cycle, and thus 42 s for the 4 V-cycles needed to reduce the L2 error to 10�4. A system with half a billion
unknowns is solved in the small scaled case on 242 processors at 48% efficiency in 1.7 s per V-cycle. This
compares well with the 41% efficiency achieved by the Prometheus multigrid library [29] on 128 IBM Power3
processors for the same problem size.

The vectorization of the PPM MG solver is tested on the NEC SX-5 using up to 8 processors. The PPM
MG sustains a performance of 2.4 GFlop/s per processor (30% of peak performance) with a vector operation
ratio of 95% and a parallel efficiency of 96%. On this machine, a single V cycle on a 512 · 512 · 512 system
takes 1.21 s on 8 processors.
4.3. Diffusion in complex geometries

We present a client application for the simulation of three-dimensional diffusion in the endoplasmic reticu-
lum (ER) of a live cell. This test demonstrates the capability of the library in handling complex-shaped domains,
and helps to assess load balance and inter-processor communication for an irregular domain decomposition.

The ER is the major biosynthetic organelle of eucaryotic cells. It consists of a complex network of sheets
and reticulated tubules, enveloped by a single lipid bilayer. We simulate a fluorescence recovery after photo-
bleaching (FRAP) [30] experiment in ER geometries reconstructed from live cells. In such an experiment,
green fluorescent protein is expressed and retained in the ER lumen. After equilibration, a specific portion
of the ER is bleached using laser light. Recovery of fluorescence by diffusion of non-bleached protein into this
volume is monitored over time. This method is used in cell biology to measure molecular diffusion constants of
protein species in different compartments of live cells.

In order to identify this diffusion constant, it is necessary to postulate a diffusion equation along with suit-
able boundary conditions. In the present case, we consider isotropic homogeneous diffusion with diffusion
constant D
ocðx; tÞ
ot

¼ Dr2cðx; tÞ ð13Þ
and homogeneous Neumann boundary conditions. In the context of the particle strength exchange (PSE) [5],
the Laplacian is approximated by an integral operator which is in turn discretized using the particle locations
as quadrature points. Particles carry concentration as their scalar property x and the resulting system of
ODEs is given in Section 2 with K ” 0 and F ¼ D

r2 frðxq � xpÞh3ðxq � xpÞ, where h is the inter-particle distance.
The accuracy of this approximation is related to the moment properties of the three-dimensional kernel func-
tion fr = r�3f(x/r). In the present study, we use the second order accurate kernel proposed by Cottet [31]
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fðxÞ ¼ 15

p2

1

jxj10 þ 1
. ð14Þ
The ODEs are integrated in time using the explicit Euler scheme.

4.3.1. Parallel speedup, timing and efficiency

The problem size is fixed at 3.4 million particles, uniformly distributed inside the ER geometry. The sim-
ulation uses Verlet lists and a cutoff of 2r for the particle–particle interactions. Each particle thus interacts
with 32 neighbors. Domain decomposition is done using adaptive recursive orthogonal bisection (cf. Section
3.9) with the z direction fixed as the organelle is very thin in the z direction. Fig. 6 shows the resulting decom-
position into 9311 sub-domains. The elongated domains at the periphery are a result of the recursive orthog-
onal bisection domain decomposition.

Parallel performance is tested on 4–242 processors. Fig. 7 summarizes the results. The simulation sustains
20% of the peak performance on the IBM p690, thus reaching a total of 250 GFlop/s on 242 processors at 84%
efficiency. The load balance is quantified by
meanjminitijðNprocÞ
meanjmaxitijðN procÞ

. ð15Þ
If we use the actual number of interactions of each particle as that particle�s computational cost for the topol-
ogy creation (cf. Section 3.2), we observe values in the range of 90–95%. Using an assumed unit cost for every
particle, the load balance is on the order of 10–60%, depending on the actual number of processors used.
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Parallel speedup and efficiency of the PPM PSE client for the fixed-size problem with 3.4 million particles on 4–242 processors.
oint is averaged from 10 samples, error bars indicate min–max span. All timings are performed on the IBM p690.

Top view of the computational domain (left panel) used for this PSE test case and the resulting PPM domain decomposition (right
on 242 processors using recursive orthogonal bisection in x and y directions (z direction fixed). Rectangles show the 9311 sub-

ns, color codes processor affiliation. The peripheral elongated domains are a result of the recursive orthogonal bisection
position.
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A visualization of the simulation result is shown in Fig. 8. Comparing such simulations of diffusion to real
FRAP experiments allows to measure molecular diffusion constants in living cells. The molecular diffusion
constant of ssGFP-KDEL in the ER lumen of VERO cells is determined in 8 different ER samples as
34 ± 0.95 lm2/s, which is in good agreement with the value of 30 lm2/s determined by Weiss et al. [32] using
fluorescence correlation spectroscopy for the closely related ssYFP-KDEL in the ER lumen of HeLa cells.

On the NEC SX-5 vector computer, more than 99% of the loops in non-initialization routines vectorize and
the average vector length is >254 words. The parallel efficiency is 88% on 8 processors and 86% on 15 proces-
sors. One time step in the latter case takes 1.15 s. 2.64 GFlop/s are sustained on each of the 15 processors thus
reaching 33% of the machine�s peak vector performance. Again using the actual number of interactions (i.e.,
the length of the Verlet list) as the computational cost for each particle, the load balance exceeds 80% on up to
15 processors.

The largest simulation performed using this PPM client uses 1 billion particles. The computation is based
on cell lists and a cutoff of 1r, i.e., each particle interacts with 26 neighbors. The simulation is performed on 64
processors of the IBM p690, takes 54 s per time step, and sustaines 20% of peak performance. Extrapolating
from the previous runs, 50–60 s per time step are expected for this large simulation. The measured 54 s fall
within this range, showing linear scaling to large numbers of particles.
4.4. Three-dimensional remeshed smooth particle hydrodynamics

We present a client application based on a novel, computationally efficient formulation of the remeshed SPH
[33]. The rSPH client is applied to the simulation of a three-dimensional compressible double shear layer [34]. In
order to measure the parallel performance, we consider a computational domain fully populated with particles
so that the reported performance measures are independent of the particular flow problem. We furthermore
present results from the application of the present rSPH methodology to the evolution of a compressible vortex
ring, demonstrating the stability and accuracy of the method.

The three-dimensional Navier–Stokes equations for viscous compressible isothermal flow in non-dimen-
sional Lagrangian form are expressed as
Fig. 8.
and th
a cube
Dq
Dt
¼ �qr � u ð16Þ
and
q
Du

Dt
¼ � 1

M2c
rp þ 1

Re
r � s; ð17Þ
where
p ¼ T q ð18Þ

and the components of the stress tensor s
Snapshots of concentration distribution from a sample PSE simulation. The ER membrane is visualized as a transparent surface
e concentration of green fluorescent protein as a volume density cloud inside it. The bleached region is represented by the outline of
. Only the part of the ER around the bleached volume is shown.
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sij ¼
oui

oxj
þ ouj

oxi
� 2

3
dij

ouk

oxk
. ð19Þ
dij is the Kronecker delta symbol, Re is the Reynolds number, and T the temperature, normalized by the char-
acteristic temperature T0 of the flow. It is set to T = 1 for all simulations (iso-thermal fluid). The Mach num-
ber M is defined as M ¼ u0ffiffiffiffiffiffiffi

cRT 0
p , where u0 denotes the characteristic velocity, c the ratio of specific heats, and R

the gas constant. The density q is normalized by the mean density q0.
The governing equations (16) and (17) are discretized using the rSPH approach [33]. In this context the

particles are reinitialized onto a Cartesian mesh when they cease to overlap. Field quantities A(x) are approxi-
mated by a summation of the particle attributes Ab, weighted by the smoothing kernel W(r,h)
AðxÞ ¼
X

b

AbvbW ðjjx� xbjj; hÞ; ð20Þ
where vb is the volume of a particle, xb is the particle position, and h the smoothing length. Spatial derivatives
of the field quantities are approximated by spatial differentiation of Eq. (20). In the present implementation,
the summations of the rSPH approximation are grouped and the kernel evaluations are replaced by pre-
computed look-up tables in order to obtain a formulation that includes three simple look-up tables K1, K2,
and K3, thus,
qp
dup

dt
¼ 1

M2c

X
q

DxpqDppqK1vq þ
1

3Re

X
q

K3 þ DxpqDxT
pq

� �
K2

h i
Dupqvq. ð21Þ
The look-up tables Ki are sampled at the distance iDxpqi between particles p and q, where Dxpq denotes the
vector of the Cartesian distance between the particles, Dupq the vector of the velocity difference, and Dppq

the pressure difference. The look-up table values are pre-computed as:
K1 ¼
1

jjDxpqjjh
dW ðr; hÞ

dr

����
r¼jjDxpqjj

; ð22Þ

K2 ¼ �
1

jjDxpqjj3h

dW ðr; hÞ
dr

����
r¼jjDxpqjj

� 1

jjDxpqjj3h

d2W ðr; hÞ
dr2

����
r¼jjDxpqjj

; ð23Þ

K3 ¼ 10K1 þ jjDxpqjj2K2; ð24Þ
where W(r,h) is chosen to be the quartic spline kernel M5 [33]. This novel formulation of rSPH has several
advantages compared to the explicit calculation of the individual components. Firstly, the evaluation of the
right-hand side is reduced from originally five to two summations. Secondly, the kernel evaluations in the sum-
mations are avoided by using the look-up tables. Note that the look-up tables are only created once, using the
corresponding PPM routine (cf. Section 3.4). Comparing the performance of the look-up table formulation of
the SPH to the classical SPH with direct kernel evaluations, we find that the computational time to evaluate
the right hand side is reduced by about 20% on the AMD Opteron processor.

The particles are reinitialized (remeshed) after each time step using the M 0
4 kernel function [23]. Time inte-

gration is done with a second-order Runge–Kutta scheme.
For the compressible vortex ring, we use M = 0.5, Re = Cq0/l = 3000, and a computational domain of size

2 · 1 · 1. The initial vortex ring is assumed to have a Gaussian distribution of vorticity x ¼ C=ðpr0Þ
expð�r2=r2

0Þ, where C = 0.3, r is the distance to the core of the tube, and r0 = 0.025 the tube radius. The ring
radius R0 is perturbed around a mean value of 0.125 by a truncated Fourier series of amplitude 9 · 10�4

[35]. For the initialization of the velocity field, we assume that the flow is incompressible with an initial unit
density field.
4.4.1. Parallel speedup, timing and efficiency

The speedup and parallel efficiency of the rSPH client are shown in Figs. 9 and 10 for the scaled and fixed-size
problem, respectively. The largest simulation considered in this rSPH test case comprises 268 million particles
and achieves a parallel efficiency of 91% on 128 processors. The efficiency on 32 processors using 67 million
particles is also 91%, which compares well with the 85% efficiency of the GADGET SPH code by Springel
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Fig. 9. Parallel speedup and efficiency of the PPM rSPH client for the scaled-size problem starting with 2 million particles on one
processor. Each point is averaged from 5 samples, error bars indicate min–max span. All timings are performed on the IBM p690.
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Fig. 10. Parallel speedup and efficiency of the PPM rSPH client for the fixed-size problem with 16.8 million particles on 4–128 processors.
Each point is averaged from 5 samples, error bars indicate min–max span. All timings are performed on the IBM p690.
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et al. [36] on 32 processors of the same computer model (IBM p690).The efficiency in the fixed-size problem
ranges between 100% and 84%. One time step of the simulation using 16.8 million particles takes 196.9 s on
4 processors and 7.3 s on 128 processors.

The result of the vortex ring simulation using 33 million particles distributed onto 16 AMD Opteron pro-
cessors is shown in Figs. 11 and 12. We use a constant time step of 5 · 10�4, corresponding to a maximum
CFL number of 0.5. The velocity profile of the vortex ring creates a density profile that has its minimum
at the core of the ring. The density field evolves to create an accumulation of mass around the ring, resulting
in pressure waves that travel through the system, re-entering through the periodic boundary downstream of
the vortex ring. Interferences with the vortex ring create additional pressure waves that decay over time
(Fig. 11). Iso-surfaces of vorticity at corresponding times are shown in Fig. 12.

The propagation speed of the compressible vortex ring is 0.48, which is within 4% of the analytical solution
[37], including corrections for compressibility [38].

The communication overhead of the present rSPH client is assessed using 16 million particles. The fraction
of time spent in communication is less than 13% of the total computational time in all cases (Table 3). Using 4
processors, only 5% of the total time is spent in communication. The communication effort increases by a
factor of 2.5 when using 64 times more processors. This demonstrates the high efficiency of the mapping
and communication routines in the PPM library.

4.5. Three-dimensional vortex methods

The final client application involves simulations using three-dimensional particle vortex methods. The
application demonstrates a large number of the present library tools and their interplay as it involves particle
convection and diffusion, particle–mesh/mesh–particle interpolation, particle reinitialization, and the solution



Fig. 11. Iso-surfaces of the density field for q = 0.900, 0.990, and 1.015 at times t = 0.15, 0.25, 0.50, and 1.00. The field is discretized using
33 million particles. Acoustic pressure waves propagating from the ring can be seen as lightly shaded surfaces. The darkest iso-surface of
the density field indicates the position of the vortex ring.

Fig. 12. Iso-surfaces of vorticity for |x| = 40, 10, and 0.2 at t=0.15, 0.25, 0.50, and 1.00 for the same simulation as in Fig. 11.
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of Poisson equations on the mesh. Hybrid vortex methods [39,24,8] solve the incompressible Navier–Stokes
equations in the Lagrangian vorticity–velocity formulation
Dx

Dt
¼ ðx � rÞuþ mr2x ð25Þ



Table 3
Communication-to-computation ratio of the PPM using the rSPH client with 16 million particles

Nproc Total time (s) Communication (s) In percent

4 195 10 5%
16 50 4 8%
64 14 1.2 11%

128 7 0.8 12%
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and
Fig. 13
proble
max sp
r2W ¼ �x; ð26Þ

where u = $ · W is the velocity and m is the viscosity of the fluid. These equations are discretized using particles
that carry vorticity x and that are convected by the local flow velocity field u. The vorticity of the particles is
interpolated onto a mesh where it is used as right-hand side for the vector Poisson equation (26), which is
solved for the stream function using one of the PPM Poisson solvers (cf. Section 3.6). Velocities are computed
from the stream function using second order finite differences, and the vorticity diffusion and stretching are
evaluated at mesh point locations also employing second order finite differences. The time step is completed
by interpolating the grid functions Dx

Dt and u back onto particle locations. Distortion of the particle locations
leads to spurious vorticity structures and the flow ceases to be well represented by the particles. Therefore,
particles are remeshed onto regular positions after each time step using the remeshing routines of the PPM
library. The M 0

4 function [23] is used for all interpolation steps.

4.5.1. Parallel speedup, timing and efficiency

To study the parallel performance of the vortex client, we consider the double shear layer [34] as used for
the rSPH tests (Section 4.4). We use the whole computational domain as vorticity support, so that the number
of particles is equal to the number of grid points. All simulations include the solution of a convection–diffusion
equation for a passive scalar. The simulation starts from the initial condition proposed by Ghoniem and Knio
[34] with Re = 990. The Reynolds number is computed as
Re ¼ juj1 r
m

;

where r denotes the thickness of the shear layer. The ODEs are integrated using the PPM ODE solver with a
second order midpoint Runge–Kutta method and the vector Poisson equation (26) is solved with the PPM
MG solver. The results for the scaled and fixed-size cases are depicted in Figs. 13 and 14, respectively. The
largest system comprises 268 million particles distributed onto 128 processors. For this system, one iteration
takes 85 s on average with a parallel efficiency of 63%. Vectorization of the code is tested on the NEC SX-5
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computer using 8 processors. All major loops vectorize, including 99% of the particle-to-mesh and mesh-
to-particle interpolations with an average vector length of 230 words. Interpolating 2 million particles onto
a 128 · 128 · 128 mesh takes 3.4 s on a single processor. Interpolating the field back onto the particles takes
1.1 s. The particle-to-mesh interpolation using color-encoded particles as described in Section 3.5 vectorizes
99% with an average vector length of 230 words.

We also perform a high-resolution simulation of the triply-periodic elliptic instability of two anti-parallel
vortex tubes on 16 AMD Opteron processors. The vorticity initial condition follows Laporate and Leweke
[40] with a circulation based Reynolds number of Re = 2400. For this test case, the ODEs are solved using
a low-storage third order Runge–Kutta scheme [27] and the vector Poisson equation is solved with the
FFT-based Poisson solver of the PPM library.

The results are computed on a 512 · 256 · 256 mesh with a maximum of 33 million particles. One time step
takes 73 s. The left panel of Fig. 15 shows the effective viscosity meff [41] given by
Fig. 15
error,
Particl
meff ¼ �
dkh

dt

Z
X

xh � xh dx

� ��1

; as
dk
dt
¼ �m

Z
X

x � x dx; ð27Þ
where kh and xh denote the kinetic energy and vorticity of the numerical solution. The error in the effective
viscosity is below 2% throughout the simulation. The right panel of Fig. 15 illustrates the discretization of
the vorticity by particles for an initial condition where the mode of the Crow-instability [40] is dominant.

At the onset of the elliptic instability, the non-dimensional wave number, given by k� ¼ 2p
k a, with k the

wavelength of the instability and a the core size of the tubes, is determined to be k* = 1.85. This is in good
agreement with the 1.87 found by Laporte and Leweke [40]. Fig. 16 displays the formation of vortex ‘‘bridges’’
connecting and eventually destroying the two tubes.
. Left panel: Effective viscosity as defined in Eq. (27) measured during the course of the simulation. Horizontal lines denote +2%
target viscosity (0.008437), and �2% error, respectively. Right panel: Illustration of the discretization of the vorticity by particles.
es are colored according to the local magnitude of vorticity. Only particles with |x| > 6 are shown.



Fig. 16. Iso-surfaces of the vorticity (|x| = 10) for t = 5.0, 6.0, 9.0, 10.5, 12.0, and 14.2. The surfaces are colored according to the
magnitude of the vorticity components perpendicular to the tube axes.
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5. Summary

We have presented a new parallel particle–mesh library PPM which provides a general-purpose, physics-
independent infrastructure for simulating systems using particle methods. The library integrates particle, mesh,
and hybrid particle–mesh algorithms and its design goals include ease of use, flexibility, state-of-the-art parallel
scaling, good vectorization, and platform independence. The library provides for the first time an enabling com-
putational tool for large scale simulations using particle methods.

The library�s ease of use was achieved by limiting the number of user-callable functions and using generic
interfaces, overloaded for different variants of the same task. This feature of the library is demonstrated by the
development of a number of client applications, with high parallel efficiency as presented in this paper.

Flexibility and independence from specific physics was demonstrated by having various simulation client
applications. The library was successfully compiled and used on Intel/Linux, Apple G5/OS X, IBM p690/
AIX, NEC SX-5/SUPER-UX, and AMD Opteron/Linux.

Parallel scaling and efficiency were assessed in the test cases presented in Section 4 of this paper. All appli-
cations showed parallel efficiencies reaching or exceeding the present state of the art, and favorable run-times
on large systems. We have presented a state of the art PSE simulation using 1 billion particles, a VM simu-
lation using 268 million particles – to our knowledge the largest VM done so far –, an SPH simulation exceed-
ing the parallel efficiency of the current domain specific fastest code, simulations sustaining up to 33% of the
machine peak performance, and a multigrid Poisson routine solving for half a billion unknowns in less than 7 s
on 64 processors. Moreover, vectorization as tested on the NEC SX-5 computer demonstrated the suitability
of the PPM library for vector architectures. Ongoing work involves extension of the library to multilevel and
multiresolution methods, in the spirit of mesh-oriented projects such as CHOMBO [42] or SAMRAI [43] and
applications of these techniques in multiscale simulations of flow–structure interactions.

The absence of suitable parallel libraries has prevented so far the widespread application of particle meth-
ods in certain domains as well as the cross fertilization among the particle methods developed in diverse dis-
ciplines for the simulation of specific complex systems. Presently, we are working on developing this library
further into an open source project that would enable several state-of-the-art calculations across scientific
disciplines.
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