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This essay provides an introduction to the terminology,

concepts, methods, and challenges of image-based

modeling in biology. Image-based modeling and simu-

lation aims at using systematic, quantitative image data

to build predictive models of biological systems that can

be simulated with a computer. This allows one to disen-

tangle molecular mechanisms from effects of shape and

geometry. Questions like ‘‘what is the functional role of

shape’’ or ‘‘how are biological shapes generated and

regulated’’ can be addressed in the framework of image-

based systems biology. The combination of image

quantification, model building, and computer simulation

is illustrated here using the example of diffusion in the

endoplasmic reticulum.
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Introduction

Since the term ‘‘Systems Biology’’ [1, 2] has been coined, it has
been used to designate a number of different things. This
ranges from biological applications of systems theory [3] to
automated high-throughput experiments followed by statisti-

cal data mining [4] to computational modeling and simulation
of biological processes [5, 6]. The common theme that seems to
emerge in systems biology is a focus on dynamics and inter-
actions, which are believed to cause the apparent ‘‘complex-
ity’’ of life. Often, the goal is to formulate predictive models of
these interactions from systematically collected quantitative
data [7]. This approach is rooted in the mechanistic philos-
ophy that if we can predict the behavior of a system from its
current state (the data) and first principles of chemistry and
physics, then we have understood how the system works [8].

Many biological phenomena of interest, such as the intra-
cellular localization of molecules, morphogenesis, growth,
and forest distribution dynamics involve a spatial component
that calls for a spatiotemporal systems understanding.
Accounting for the spatial localization and distribution of a
system’s constituents immediately brings into play the shapes
and geometries of things, as well as their deformations over
time. How are biological shapes generated and controlled?
What is the functional role of shape? How do cells organize
into tissues? Why is the endoplasmic reticulum (ER) a network
of tubules and lamella, rather than a single spherical compart-
ment [9]? These are fundamental questions involving temporal
dynamics of spatial distributions. In image-based systems
biology, shapes, spatial distributions, and their temporal
dynamics are extracted from images. This interprets images
as quantitative measurements, rather than mere visualiza-
tions, and renders them a primary data source for systems
biology, complementing various -omics data.

Using images as quantitative measurements, however,
raises a couple of key issues. First, we need to be able to
reproducibly extract quantitative information from images.
Second, we must know the accuracy (error bars or confidence
intervals) of the extracted information in order to decide
whether a certain conclusion is supported by the data or could
just be an artifact of measurement errors [10]. Third, we have
to express and account for prior knowledge and hypotheses
about the system we study. Fourth, we need versatile methods
that can be applied in more than just one specific situation.
Fifth, we need user-friendly and efficient software that facili-
tates transfer of new methods into daily scientific practice.

This essay gives an introduction to the concepts, chal-
lenges, methods, and terminology of image-based systems
biology. The emphasis is on exposing general concepts and
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unifying ideas. I follow the typical workflow of image-based
systems biology: from image analysis to model building and
simulation (‘‘in silico experiment’’). I focus on computational
methods for image quantification and simulation. This may
not always be the best choice, as manual or theoretical
methods are preferable in some cases. Thus, I first provide
a few indications of why and when computational methods
can be useful or even indispensable.

In order to illustrate how the different bits and pieces form
a coherent workflow, I carry through the entire essay an old
example from my own work: studying the influence of organ-
elle geometry on diffusion processes in the ER [11, 12], as
observed in fluorescence recovery after photobleaching
(FRAP) experiments [13, 14] (see Fig. 1). This work addressed
a twofold goal: on the one hand, we wanted to have a
quantitative tool to measure molecular diffusion constants
in complex-shaped organelles, on the other hand, we wanted
to study the effects of organelle shape on transport processes.
The first goal requires modeling because the diffusion con-
stant is not directly observable in a FRAP measurement, since
the fluorescence recovery dynamics measured by FRAP also
depend on the geometry of the organelle. If more or thicker ER
tubules lead into the bleached region, recovery is faster for
identical diffusion constants. The second goal requires mod-
eling because the diffusion constant is not controllable in the
experiment; we cannot dictate to the cell what diffusion con-
stant a protein should have. While we can observe FRAP
dynamics in differently shaped ERs, we are never sure whether
the observed differences in recovery dynamics come from
geometric differences or from differences in the molecular

diffusion constants in the different cells. In a computer simu-
lation, however, we can fix the diffusion constant to any value
we like and hence separate its effect from the effect of geom-
etry. In this example, we only consider observations on length
scales larger than individual ER tubules and on the time scale
of seconds. Other experimental techniques to measure diffu-
sion constants, such as fluorescence correlation spectroscopy
[15] or single-molecule tracking [16, 17], can be used as inde-
pendent validations, but the present model does not repro-
duce the single-molecule dynamics they measure. The
workflow and data flow of this example is summarized in
Fig. 2. This is a simple example of image-based systems
biology, where quantitative imaging is used to build a pre-
dictive model that enables learning a non-observable quantity.

Whither computers?

The aim is to model and simulate spatiotemporal dynamics
and interactions in the real shape context of the biological
system. The shapes, their dynamics, and the spatiotemporal
distributions of the players (e.g. fluorescently labeled
proteins) are quantified from images. This mainly requires
four iterative steps: (i) image analysis and image quantifi-
cation, (ii) model formulation, (iii) simulations of the model,
and (iv) model validation and parameter identification. Each
of these steps can be done either manually, theoretically (i.e.
with paper and pencil), or computationally. Computer simu-
lations do not solve a model, but only punctually probe its
behavior for specific parameter values (e.g. diffusion con-
stants and reaction rates) and at specific locations in
space (called ‘‘discretization points’’). Computer simulations
are thus more akin to experiments than to theory, which
is why they are sometimes referred to as ‘‘in silico
experiments’’.

The following properties of biological systems may hamper
their theoretical treatment [18]. Biological systems tend to be:

� Hierarchically organized: We think of biological systems as
organized in levels where the smaller constitutes the larger
[19]. Atoms constitute molecules that constitute organelles
that constitute cells that constitute tissues that constitute
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Figure 1. Example of a FRAP experiment with ssGFP-KDEL (pure
GFP with an ER targeting and retention sequence) expressed in a
VERO cell (data: Helenius lab, ETH Zurich). A: A time-lapse
sequence of confocal micrographs before bleaching (top), immedi-
ately after bleaching the region of interest (ROI) given by the orange
square (middle), and 2 minutes after bleaching (bottom). For each
time point we measure the total fluorescence intensity in the ROI,
relative to the pre-bleach intensity. B: FRAP curve showing the
fluorescence recovery due to influx of unbleached protein into the
bleached region. This influx only happens along ER tubules and
hence depends on the geometry of the organelle in the vicinity of
the ROI.

....Prospects & Overviews I. F. Sbalzarini

Bioessays 35: 482–490, � 2013 WILEY Periodicals, Inc. 483

M
e
th

o
d

s
,
M

o
d

e
ls

&
T

e
c
h

n
iq

u
e
s



organs that constitute organisms that constitute ecosystems.
This is akin to how computer software is organized, where
characters constitute keywords that constitute code lines
that constitute objects or subroutines that constitute pro-
grams that constitute software systems. Hierarchy is well
expressed in the framework of computation [20], compu-
tational complexity [21], and algorithms [22].

� Coupled across scales: In biology, events on one scale can
influence dynamics at any other scale, not only at the
immediately adjacent ones. Examples include quorum sens-
ing in bacteria [23] and the behavioral changes in animals
upon binding of neurotransmitters or hormones to their
receptors. Capturing these cross-scale effects requires
multi-scale modeling techniques [24]. In many passive
(dead) systems, such scale-coupling does not exist, allowing
models to be formulated at a certain level of description
without requiring information from other levels. Mechanics,
for example, can describe the bending of a rod under load
without needing information about the positions and vel-
ocities of the individual atoms that constitute the rod. Such
scale separation is frequently not obvious in biology.

� Regulated: Most biological systems possess sensors with
which they constantly monitor their state and actuators
to react to perturbations. It is easy to predict from the laws
of physics what trajectory a tennis ball will follow when
thrown. It is, however, virtually impossible to predict the
trajectory of a thrown cat. This is because the cat constantly
monitors its flight and uses limbs and tail to steer, making
sure it lands on its feet.

� Complex-shaped: With the exception of a few unicellular
organisms, living things have complex and irregular shapes
that moreover grow, move, and deform over time [25]. These
shapes are not only difficult to describe mathematically, but
they can also qualitatively alter the dynamics of processes
within [11, 26]. Moreover, model equations are often imposs-
ible to solve theoretically in complex domains.

� Plastic: The dynamics of a biological system change over
time. Examples include cell-cycle-dependent transcription,

the change of physiological dynamics with age, and immune
reactions to pathogens. We thus need to deal with models
that change their parameters or even their structure over
time. It is often hard to intuitively understand indirect feed-
back via model changes, but computer simulations may
help disentangle the different influences.

� Non-equlibrium: While living systems can be at steady state,
they are never at equilibrium [27]. Much of physics has been
developed for equilibrium situations and does not immedi-
ately transfer to biology. The kinetics of biochemical reac-
tions in live cells and small volumes, such as organelles, for
example, is markedly different from equilibrium kinetics as
governed by the macroscopic law of mass action [28–33].
Since our theoretical knowledge of non-equilibrium dynam-
ics is incomplete, computer simulations are often the best
resort.

� Nonlinear: Bimolecular reactions, cooperation, feedback
loops, and competition are important concepts in biology.
These and others render the system dynamics nonlinear.
Many nonlinear models are impossible to solve theoretically
and our intuition of how a nonlinear system reacts to per-
turbations is often wrong [34], because a nonlinear system is
not equal to the sum of its parts. Again, computer simu-
lations are often the best way out.

Due to these properties, biological systems are often called
‘‘complex’’. This, however, has little to do with the mathemat-
ical concept of complexity as used in computer science [21],
but often rather means that we do not fully understand them.
Given these properties of biological systems, the use of com-
putational data analysis and simulation is indicated
whenever:

(1) the amount of data is too large for manual analysis,
(2) reproducibility of the analysis is important,
(3) the system dynamics cannot be intuitively understood,
(4) Time or length scales are outside of the experimentally

accessible range,

record pre-
bleach stack

in vitro

in silico

bleach record FRAP 
time series

record post-
FRAP stack

3D 
reconstruction

Simulate 
FRAP recovery

Identify diffusion 
constant

images ROI
coords.

compare to check organelle didn’t move

FRAP
curve

molecular D

Figure 2. Workflow of the example used throughout this text. We consider the problem of using fluorescence recovery after photobleaching
(FRAP) experiments [13, 14] to measure the molecular diffusion constant in a complex-shaped organelle, the endoplasmic reticulum (ER)
[11, 12]. The workflow of the image-based solution starts from recording a pre-bleach confocal z-stack, which is used to reconstruct the ER
geometry in 3D in the computer. This reconstruction is then used for in-silico simulation of the FRAP recovery dynamics in the same geometry
and with the bleached region of interest (ROI) at the same location as in the experiment. Comparing the simulation output with the experimen-
tally measured FRAP curve then allows the identification of the unknown molecular diffusion constant D of the fluorescently tagged protein.
Finally, a post-FRAP z-stack is recorded to check that the organelle has not significantly moved or deformed during the course of the
experiment.
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(5) quantities of interest are not experimentally observable or
controllable, or

(6) ethical considerations make experiments undesirable.

The first step: Image analysis and
quantification

Image-based systems biology combines systematic quantitat-
ive image data collection with spatiotemporal systems model-
ing. This naturally starts from imaging, followed by detecting,
delineating, and reconstructing the shapes and concentration
distributions of interest from the images. In addition to many
challenges in sample preparation, labeling, and image acqui-
sition not discussed here, computational bio-image analysis
comes with its own set of difficulties.

These are best understood by considering the nature of an
image as a measurement of a real-world scene, for example,
the spatial distribution of a fluorescent marker. There are
many ways a scene or sample can be imaged: using different
imaging modalities, different microscopes, different magnifi-
cations, different view angles, etc. A specific view leads to one
of all possible images. Clearly, information is lost from the real
specimen, as only one or few of the many possible views are
recorded. The optics of the microscope then map the view to
an intensity distribution in the focal plane. This entails a
further loss of information, as no microscope has a perfect
point-spread function (PSF) [35]. Light diffraction leads to a
PSF of non-zero width, preventing the separation of objects
close together. The minimum gap required between two
objects such that they are seen as separate in the image is
called the resolution of the microscope; it is comparable to the
wavelength of the recorded light, with different microscopy
techniques having different pre-factors. In addition, nonlinear
effects such as aberrations occur, even in aberration-corrected
lenses. The resulting blurry intensity distribution in the focal
plane is then discretized onto the pixel grid of the camera
sensor, where each pixel measures the total intensity in its
region of the focal plane. This measurement, however, is
subject to various sources of noise and measurement errors.
For example, in fluorescent imaging the signal is often dim
with a small number of photons collected from the specimen
in each pixel, causing Poisson noise. Other types of noise such
as Gaussian noise are also introduced from the electronics
used to detect low levels of photons. In the end we thus
observe a noisy, discretized, blurred map of the real radiance
distribution in the imaged sample.

A digital image is a table of numbers, where each entry is
the recorded intensity in a given pixel. Imagine you are given
such a table, rather than its visualization as an image, and you
are asked to find and delineate objects represented in the
image. All you are allowed to do is apply arithmetic operations
to the numbers in the table. In the end, this should result in a
new table containing the number, sizes, positions, shapes, etc.
of the objects represented in the image, e.g. the cell nuclei in
the imaged tissue. The challenge when designing image-
analysis methods is to find (and program into a computer)
a sequence of arithmetic operations that reliably does this job
for previously unseen input images. Extracting from an image

the positions, shapes, and brightnesses of all fluorescently
labeled nuclei reduces the amount of data from one number
per pixel to a few numbers per nucleus; the table of nuclei is
smaller than the original table of pixels. It does, however,
increase the utility of the information, as we can biologically
reason about nuclei, but not about pixels.

Another big challenge in bio-image analysis is to quantify
the errors and uncertainties in the results. Images are often
under-used with only a fraction of the information contained
in them actually extracted and studied. Without uncertainty
quantification [36, 37], however, we will never know whether
an observed variation in the read-out comes from imaging
noise, image-analysis errors, or real biological differences in
the samples. Approaches that address these issues exist [38],
but much research remains to be done in this direction.

In our ER example [11] we used the simplest possible
approach to determining which pixels are inside the ER and
which are outside. While this turned out to be sufficient for the
given application, we note that much more sophisticated ima-
ge-analysis methods and software are available when needed
[39–43]. In our example it was sufficient to fix a threshold
intensity value and instruct the computer to go through the
table of pixel intensities from the entire 3D z-stack and flag all
pixels with an intensity above the threshold as ‘‘ER’’, all others
as ‘‘background’’. The membrane of the ER is then the surface
enclosing all ‘‘ER’’ pixels or, equivalently, the intensity iso-
surface at the threshold value, as shown in Fig. 3.

The second step: Modeling

Once shapes, objects, intensities, or motion trajectories [17]
are quantified from images, this information can be used to
formulate models of the system under study. The domain of
computational models (as opposed to model organisms,
thought models, cardboard models, or others) comprises four
kingdoms: discrete/stochastic, discrete/deterministic, con-
tinuous/stochastic, and continuous/deterministic models.
Each of these kingdoms contains a wealth of phyla, classes,
and families. The kingdom largely determines how a model
has to be simulated and what can be expressed with it.

The dynamics of a deterministic model is completely deter-
mined by the model’s present state. In contrast, the evolution
of a stochastic model involves a random component and
future states are not predictable. The only thing one can
predict from a stochastic model is the probability distribution
(viz., the mean, variance, etc.) of the future states. This is
much like the weather forecast using a computational model
of atmospheric physics in order to tell you that that there is a
65% chance for rain. Only a probability can be given, because
there are too many random or unknown influences onto the
weather. Continuous models describe the evolution of vari-
ables that take continuous values, such as the real-valued
concentration of a chemical. In discrete models, the variables
are constrained to assuming only integer multiples of a certain
unit. An example is the number of molecules in a compart-
ment. This number can be 1, 2, 3, . . ., but it cannot be 1.5, hence
defining a discrete variable over the unit ‘‘molecule’’.

We distinguish mechanistic (‘‘bottom-up’’) from phenom-
enological (‘‘top-down’’) models. Mechanistic models repro-
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duce emerging behavior from the next finer level of descrip-
tion, whereas phenomenological models do not. An example
of the former is the prediction of the shape of the inner
mitochondrial membrane, as observed in electron tomography
images, from a continuous/deterministic model of lipid mem-
brane mechanics under tension [44]. Examples of the latter
include reaction-diffusion models that reproduce various
animal fur coats and seashell patterns [45–47]. Moreover,
we distinguish quantitative models from qualitative models.
Quantitative models predict or reproduce the numerical values
of the observables of interest, e.g. the concentration in nM
of the output species of a signal transduction network.
Qualitative models do not reproduce absolute levels or values,
but only their relative changes. A qualitative model of the
same signal transduction network would hence not tell us the
output concentration, but only whether it goes up or down, or
whether it is greater or less than a threshold level.

It is essential that any model strike a balance between level
of detail and simplicity [48]. Ockham’s razor [49] states that
every system should be modeled only with as much detail as
necessary, and with as little as possible. The simplest model is
the most useful one, the one from which we can learn the most
about the key mechanisms at work. Much of the art of model-
ing consists in identifying the appropriate level of detail.
Validation then shows whether neglected details are indeed
insignificant for the process under study (see Verification and
Validation Section).

In the ER FRAP model [11], we opted for a continuous/
deterministic description. This was motivated by three
reasons: First, the fluorescent markers are abundant in the
ER, so we can consider the fate (position and velocity) of
individual molecules negligible. Second, the diameter of even
the thinnest ER tubule is orders of magnitude larger than a

single protein. Third, the time scale we are interested in is the
diffusive recovery time, which is several seconds. Individual
thermal fluctuations of the molecules and bond vibrations are
much faster than that and we do not need to resolve them. We
can thus model the spatiotemporal evolution of a continuous
fluorescence concentration field, which is also what we
observe in the images as a spatial intensity distribution.
Furthermore, we assume normal, homogeneous, and isotropic
diffusion [11]. We would only invoke more elaborate transport
models if this simplest model failed to explain the data
(Ockham’s razor [49]). Indeed, we found that normal, isotropic
diffusion explains the data well, and that apparent anomalies
in FRAP dynamics [50] can be explained by geometric effects
from the shape of the organelle [11].

The third step: Simulation

A number of software packages are available to simulate spatio-
temporal models in biology [51–55]. For many applications,
however, it is still necessary to implement custom-made simu-
lation programs that account for specific needs or include more
recent simulation methods that are not yet available in stand-
ard software packages. It is important not to confuse the soft-
ware tool with the method it implements. Most software
implements more than one method, and most methods are
implemented in various software tools. Depending on the king-
dom of a model, different simulation methods are available to
probe the model’s behavior in silico [48].

Simulation methods for discrete/stochastic models
represent the discrete objects (molecules, animals, cells,
etc.) as individual numbers or objects in computer memory,
whose interactions are governed by random numbers. In
methods for discrete/deterministic models, discrete repres-
entations of objects interact according to deterministic rules.
This means that the result of an interaction only depends on
the positions and properties of the interacting entities; there is
no random component. Continuous/stochastic models involve
continuous distributions, or fields, that are defined every-
where in space and evolve according to a random process.
Since a computer can only store a finite amount of numbers,

A) B) C)

Figure 3. Image processing in the ER FRAP example [11]. A: Three
example slices from a confocal pre-bleach z-stack of the fluores-
cently labeled (ssGFP-KDEL) ER in a VERO cell (images: Helenius
lab, ETH Zurich). B: Using per-pixel thresholding, the 3D shape of
the ER is reconstructed in the computer as an intensity iso-surface.
C: Magnification of a part of the geometry to illustrate the level of
detail of the reconstruction.
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but fields are defined at an infinite number of points in space,
the fields need to be discretized before they can be simulated.
Discretization involves selecting a finite set of discretization
points where the field values are stored and their evolution is
simulated over time. The discretization points play the role of
weather stations. Only at the locations of the weather stations
the air temperature is recorded and its evolution tracked over
time. Since this delivers no information about the (tempera-
ture) field between individual discretization points, these
points need to be sufficiently close together so we do not miss
any interesting variations between them. The distance
between neighboring discretization points is called the resol-
ution of the simulation. In simulations of continuous/deter-
ministic models, the continuous fields are discretized as
described above. Their evolution, however, follows determin-
istic rules, such that the change of a field only depends on the
fields at present.

The continuous/deterministic ER FRAP model [11] considered
as an example in this essay has been simulated using the
method of particle strength exchange (PSE) [56], as illustrated
in Fig. 4.

Geometry representation in the computer

A challenge in any simulation method for image-based sys-
tems biology is the need to represent the image-derived
geometries in the computer and to simulate the model in
these often irregular geometries. The geometries can be
arbitrarily complicated and may move and deform over time.
Since a computer can only store numbers, shapes also need
to be represented numerically. This can be done using a
variety of methods [57], including triangulated surfaces [58],
pixel/voxel sets [59], and implicit surface representations
such as level sets [60] or phase fields [61]. Level-set methods
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Figure 4. Simulation of a continuous/deterministic diffusion model in image-derived ER geometries [11]. A: The ER is ‘‘filled with particles’’
that discretize the fluorescence concentration field. Each particle contains a certain amount of fluorescence. Particles in the bleached region
are initially empty (not shown). B: In order to simulate the process of diffusion, particles exchange fluorescence with their neighbors according
to Fick’s law, which states that the flux j between any pair of particles is given by the concentration gradient

D

c between these two particles,
multiplied with the diffusion constant D. In each time step of the simulation, all particles interact with their neighbors according to this
deterministic rule [56]. In the figure, bright particles contain more fluorescent protein; the magnitudes of the fluxes are reflected by the
thicknesses of the arrows. C: As the simulation steps forward through time, the FRAP curve can be computed by summing up the total
fluorescence of the particles in the bleached region (orange box) at each time point. This leads to a simulated FRAP curve and allows visual-
izing the 3D intensity distribution over time (insets).
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are well suited for simulating moving and deforming geo-
metries [6, 62, 63].

Simulating a model on a curved surface is more difficult than
simulating the same model in a volume. This is because the
curvature of the surface needs to be explicitly accounted for,
which often requires that it first be computed or numerically
approximated. If the surface additionally moves or deforms over
time, possibly in function of the local concentration of the
substances diffusing on it, the problem gets even more compli-
cated [62, 63]. In the ER FRAP example [11], the geometry of the
ER was represented as a level set [64], and the method has also
been extended to simulating diffusion in the ER membrane [12].

The fourth step: Parameter identification
and model validation

Most models contain parameters such as rate constants, dif-
fusion constants, compartment volumes, etc. If the values of
all parameters are known or have been measured beforehand,
the model is called white-box and can directly be simulated
without any further ado [65]. Models with unknown parameter
values are called black-box. Estimating or inferring the
unknown values of model parameters from data is called
parameter identification; it is a well-researched topic in sys-
tems theory [66–68] and often the primary purpose of a model.

Parameter identification

In order to infer unknown parameter values from data, we
need a set of high-quality experimental reference data, called
the training data. The task of parameter identification then
becomes an optimization problem: find the parameter values
for which the model output reproduces the training data as
well as possible. What ‘‘as well as possible’’ means depends on

the specific objective. In the ER FRAP example [11], the objec-
tive is to minimize the sum of squared differences between
experimentally recorded FRAP training curves and the
simulation output. Optimization is done using the simplex
algorithm [69]. The unknown parameter value to be identified
is the molecular diffusion constant of the labeled molecules,
hence providing a way of inferring diffusion constants in
complex geometries (see Fig. 5).

In practice, one often finds multiple parameter sets that
work about equally well within the experimental measure-
ment uncertainties. It is then often desirable to find robust
parameters, i.e. values that would not drastically change if
the training data or their measurement errors were slightly
different. Quantifying the robustness (or importance) of
parameters is the realm of sensitivity analysis methods [70].
Local sensitivity analysis can be used to quantify the robust-
ness of any set of parameter values found by parameter identi-
fication. A parameter is called robust if it can be varied over a
wide range without significantly deteriorating the data fidelity
of the simulation output. Because measurement and simu-
lation errors are unavoidable, we usually prefer robust models
and robust parameter settings.

If not all of the parameters have been measured or ident-
ified, global sensitivity analysis [71] can be used to find the
most influential parameters in a model, i.e. those that mainly
determine the model behavior. This can be useful to figure out
which parameters should be measured experimentally.
Another use of global sensitivities is to eliminate parameters
from a model that have no significant influence on model
behavior, hence simplifying the model.

Verification and validation

Arguably the most important step in modeling is to verify the
simulation and to validate the model [72]. Verification asks the
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Figure 5. Parameter identification in the ER FRAP example [11]. A: The unknown molecular diffusion constant is the only parameter in the
model. It can be identified by fitting simulation output to experimental FRAP measurements, as shown. The dynamics in different cells is
markedly different due to different ER geometries. Nevertheless, the diffusion constants that lead to the best fit are in the same range of
34 � 0.95 mm2/seconds for ssGFP-KDEL in the ER lumen of VERO cells. This shows that a large portion of the observed variability in FRAP
curves could be due to geometric effects. B: Quantification of the non-controllable geometric effects using the in silico model. Using the same
molecular diffusion constant in simulations in different reconstructed ER geometries causes the recovery half-time (orange dashed lines) to
vary by about 250%. This variation is purely geometry-induced. The fact that we can control the diffusion constant in the simulations allows
disentangling the effects of geometry from the effects of molecular diffusion.
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question ‘‘am I simulating the model correctly?’’ whereas
validation asks ‘‘am I simulating the correct model?’’

Verification is usually done by considering a simplified
system for which the model can be solved exactly (i.e. theor-
etically). For this simplified benchmark system, the simulation
result is compared with the theoretical, exact solution and the
simulation error hence quantified. No simulation is exact,
since we are not solving the model everywhere, but only at
the discretization points in space and/or time. However, if one
can show that the simulation error decreases with increasing
resolution, the simulation is considered verified.

Validation is typically done by comparing with experimen-
tal data [72]. Of course, the data that are used to validate the
model must be independent from the data used to build the
model or to identify model parameters. This usually involves
performing a set of independent control experiments with
perturbations, geometries, or views that were not used for
building the model or for identifying the parameters. If the
model, with the parameter values identified on the training
data, also correctly reproduces these test data, it is considered
validated. Of course, the validation becomes stronger if more
and more different test data are used. No model, however, is
correct for all data. It is hence important that both the training
and the test data come from within the model’s validity frame.
It would be wrong to expect a macroscopic model to accurately
reproduce microscopic quantities. The continuous ER FRAP
model, for example, would never reproduce the trajectory of
an individual molecule, as measured in a single-molecule
tracking experiment.

The ER FRAP simulations [11] have been verified using a
simple 1D benchmark case (see Supplementary Material in [11]).
Validation has been done by bleaching two different locations
in the same ER. The FRAP dynamics from one bleached region
was used to identify the diffusion constant of the molecule, and
the dynamics from the second bleached region was used as test
data to check that the model correctly predicts the influence of
the geometric differences between the two regions.

Conclusions and discussion

I provided an introduction to the terminology, concepts,
and challenges of image-based modeling and simulation
in biology. The goal is to understand the spatiotemporal
dynamics and interactions in biological systems in realistic
geometries and shapes. This allows us to directly address
questions like: ‘‘what is the functional role of shape?’’
(why, e.g., is the ER a network of tubules and not a spherical
blob [9]?), ‘‘how is shape regulated and generated?’’ (the
question of morphogenesis), or ‘‘how do cells organize into
tissues, communicate, and arrange?’’ Several features of bio-
logical systems motivate the use of computing. In image-based
systems biology the quantitative data used to model shapes
and spatiotemporal distributions are extracted from images.
This interprets an image as a quantitative measurement rather
than a visualization. Once quantitative information is avail-
able, it can be used to formulate models of the hypothesized
dynamics. The domain of computational models comprises
four kingdoms, each with its own capabilities and limitations.
Depending on what kingdom a model belongs to, one may

have to choose different computational methods to numeri-
cally simulate it. Finally, the loop to experiments is closed in
model validation and parameter identification.

Many methodological advancements are still required to
reach the grand goal of mechanistically simulating an entire
cell [73–75] or the development of a complete model organism.
The main computational challenges are: (i) flexible image-
analysis methods that provide confidence estimates along
with the results, that work in more than just one particular
case, and that provide a principled way of including prior
knowledge about the imaged system and the imaging system.
(ii) Multi-scale simulation methods that are easy to use, that
correctly couple different scales in the model, and that effi-
ciently utilize modern computer hardware [76]. (iii) Robust
and efficient black-box optimization and sensitivity analysis
methods with proven performance guarantees. (iv) User-friendly
software that allows researchers to test different simulation
workflows without having to program many lines of code.

Image-based systems biology combines systematic, quan-
titative imaging with predictive spatiotemporal modeling and
simulation. This exposes unique opportunities for developing
innovative computational methods, overcoming observability
and controllability limits in biology, and understanding bio-
logical processes in their natural context.
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